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Abstract. These are some notes on microlocal sheaf theory and its applications in sym-
plectic and contact geometry. For the general theory of microlocal sheaves, the main source
will be Kashiwara and Schapira’s Sheaves on Manifolds and Schapira’s A Short Review to
Microlocal Sheaf Theory. For sheaf quantization of Legendrian isotopies the sources are
Guillermou, Kashiwara and Schapira’s Sheaf Quantization of Hamiltonian Isotopies and
Applications to Nondisplaceability Porblems and Shende, Treumann and Zaslow’s Leg-
endrian Knots and Constructible Sheaves. For quantization of Legendrian submanifolds
the source is Guillermou’s Quantization of Conical Lagrangian Submanifolds of Cotan-
gent Bundles. Other references include Viterbo’s An Introduction to Symplectic Topology
through Sheaf Theory, Tarmarkin’s Microlocal Conditions for Nondisplaceability, Shende’s
online lecture notes and Nadler’s online lecture notes.
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1. General Sheaf Theory

1.1. Sheaves On Manifolds. Let M be a C∞-manifold. We study sheaves on M with
coefficient k where k is a field. They form an abelian category Sh(M), and we can consider
the unbounded derived category DSh(M) and bounded derived category DbSh(M).

Suppose f : M → N is a continuous map. We recall some definitions. Let G ∈ Sh(N).
The pull back f−1G is defined by

Γ(U, f−1G ) = lim−→
V⊃f(U)

Γ(V,G ).

This is an exact functor, so we denote the derived functor again by f−1. Let F ∈ Sh(M).
The push forward f∗F is defined by

Γ(V, f∗F ) = Γ(f−1(V ),F ).

This is only left exact, and the derived functor will be denoted by Rf∗. Also recall that f∗
is the left adjoint of f−1.

Besides the push forward, we also have the proper push forward f!F defined by

Γ(V, f!F ) = {s ∈ Γ(f−1(V ),F )|supps compact}.

Again this is left exact, and the derived functor will be denoted by Rf!.
One intuitive understanding of Rf∗ and Rf! is that the push forward gives you stan-

dard cohomology, and the proper push forward gives you compactly supported cohomology.
When f : M → pt, it’s not hard to show

H∗(Rf∗kM ) ' H∗(M ;k), H∗(Rf!kM ) ' H∗c (M ; k).

Indeed as in cohomology theory we have change-of-variable formula for integration, here we
also have a base change formula for proper push-forward.

Proposition 1.1 (Base change formula). Suppose f ◦ g′ = g ◦ f ′. Then g−1 ◦ Rf! '
Rf ′! ◦ (g′)−1.

Proof. We only prove the proposition in the underived setting. First one can build a canon-
ical morphism f! ◦ g′∗ → g∗ ◦ f ′! (we leave it to the readers as an exercise). By adjunction
this will induce a morphism g−1 ◦ f! → f ′! ◦ (g′)−1. It is an isomorphism because

(g−1 ◦ f!F )x = (f!F )g(x) = Γc(f
−1(g(x)),F )

' Γc((f
′)−1(x), (g′)−1F ) ' (f ′! (g

′)−1F )x.

Since g′ : (f ′)−1(x)→ f−1(g(x)) is a homeomorphism. �

A natural question is, is there a right adjoint functor of the proper push forward? Here
is the answer.

Definition 1.1. Let f : M → N be continuous. f! has finite cohomological dimensions.
Let G ∈ DbSh(N). Then the complex of sheaves f !G is defined by

RΓ(U, f !G ) = RHom(f!KU ,G ),

where KU → kU → 0 is a c-soft resolution.

The functor f ! is the right adjoint of f!. Now we’re able to generalize Poincare duality
to Verdier duality on sheaves. This requires the notion of a dualizing sheaf (or a dualizing
complex).
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Definition 1.2. Let f : M → N be continuous. Then the dualizing sheaf is

ωM/N = f !kN .

In particular, write ωM = ωM/pt. Let F ∈ DbSh(M). Then the Verdier dual of F is

DMF = RH om(F , ωM ).

The dual of F is
D′MF = RH om(F ,kM ).

Let f : M → N be a submersion with fiber dimension l. Then the orientation sheaf is
defined by

orM/N = H−lωM/N .

In fact, when N = pt and M is orientable, orM = kM . In general,

Γ(U, orM ) = Hom(Hn
c (U ; k),k).

Here are some basic properties of the proper pullback functor. We first remind the readers
of two other functors that will be used frequently in the future. For F ∈ Sh(M), Z ⊂ M
a locally closed subset,

FZ = iZ,∗i
−1
Z F = F ⊗ kZ , ΓZ(F ) = Hom(kZ ,F ).

There are corresponding derived functors in DbSh(M).

Proposition 1.2. Let Z ⊂ M be a closed subset, U = M\Z and i : U → M . Then there
are exact triangles

RΓZ(F )→ F → Ri∗i
−1F

[1]−→, Ri!i
−1F → F → FZ .

Proposition 1.3. Let f : M → N be a homeomorphism onto a locally closed subset f(M) ⊂
N . Then

f ! ' f−1 ◦RΓf(M).

Proof. When f is an embedding we know that f−1f! ' id.

RHom(F , f !G ) 'RHom(f!F ,G ) ' RHom(f!F ⊗ kf(M),G )

'RHom(f!F , RΓf(M)(G )) ' RHom(F , f−1RΓf(M)(G )).

�

Proposition 1.4. Let f : M → N and F ,G ∈ DbSh(N). Then

f !RH om(F ,G ) ' RH om(f−1F , f !G ).

Proof. Consider any sheaf H ∈ DbSh(M). Then

RH om(H , f !RH om(F ,G )) 'RH om(f!H , RH om(F ,G ))

'RH om(f!H ⊗L F ,G )

'RH om(f!(H ⊗L f−1F ),G )

'RH om(H , RH om(f−1F , f !G )).

The second last isomorphism is because one can choose a flat resolution of F and when F
is flat (

f!(H ⊗ f−1F )
)
x
'Γc(f

−1(x),H ⊗ f−1F ) ' Γc(f
−1(x),H ⊗ (Fx)M )

'Γc(f
−1(x),H )⊗Fx = (f!H ⊗F )x .

�
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The following proposition gives an alternative description of RH om(F ,G ) in terms of
the diagnol in M ×M . The result will be used later.

Proposition 1.5. Let F ,G ∈ DbSh(M), and ∆ ⊂M ×M the diagnol. Then

RH om(F ,G ) ' RΓ∆(RH om(p−1
1 F , p!

2G ))|∆.

Proof. Denote by δ : ∆→M ×M the embedding. Then

δ−1RΓ∆(RH om(p−1
1 F , p!

2G )) 'δ!RH om(p−1
1 F , p−1

2 G )

'RH om(δ−1p−1
1 F , δ!p!

2G )

'RH om(F ,G ).

�

1.2. Singular Support. We know that a sheaf F is defined by its corresponding local
sections U 7→ Γ(U,F ). When a sheaf is locally constant, this gives us a local system (which
is equivalent to a vector bundle with a flat connection). However, this is not always the
case.

Suppose we want to measure locally how a sheaf fails to be a constant sheaf, then a
natural way would be to measure where parallel transport fails to transport points on the
stalk. Therefore we need the following information: (1). a point; (2). a tangent vector
along which we are doing parallel transport. Unfortunately we don’t have the notion of
parallel transport on a general sheaf, so instead we have to look at local sections. Namely
we measure where local sections fail to extend.

Definition 1.3. Given M a manifold and F ∈ DbSh(M), the singular support is a set
SS(F ) ⊂ T ∗M so that (x, ξ) ∈ SS(F ) if there is ϕ ∈ C∞(M), ϕ(x) = 0, dϕ(x) = ξ so that

RΓϕ−1([0,∞))(F )x 6= 0.

Proposition 1.6. (1). SS(F ) ∩X = supp(F ); (2). SS(F [1]) = SS(F );

(3). Let F1 → F2 → F3
[1]−→ be an exact triangle. Then for i 6= j 6= k,

SS(Fi) ⊂ SS(Fj) ∪ SS(Fk),

SS(Fi)\SS(Fj) ∪ SS(Fj)\SS(Fi) ⊂ SS(Fk).

The definition of NOT being in the singular support is independent of the choice of the
function ϕ ∈ C∞(M). In fact this can be proved using the non-characteristic deformation
lemma, though not so obvious.

Basically, the lemma says that as long as we deform the level set ϕ−1(0) without crossing
the singular support, the cohomology group won’t change, which tells us that indeed the
notion of singular support is detecting if sections of sheaves can propagate/extend in certain
directions.

Theorem 1.7 (Non-characteristic deformation lemma). Let {Ut}t∈R be a family of open
subsets in M , F ∈ Db(M) with compact support, so that

(1). Ut =
⋃
s<t Us, ∀ t ∈ R;

(2). For Zs =
⋂
t>s Ut\Us, RΓM\Ut(F )x = 0 as long as x ∈ Zs\Ut.

Then for all t ∈ R, we have

RΓ
( ⋃
s∈R

Us,F
)
∼−→ RΓ (Ut,F ) .

The following lemma shows that the sheaf category Db(M) is invariant under homotopy
equivalence. The proof relies on the non-characteristic deformation lemma.
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Lemma 1.8. Let f : M → N be a homotopy equivalence. Then Rf∗f
−1F

∼−→ F .

Proof. Let h : M × [0, 1] → M be a homotopy so that h0 = id. First we prove that
Rh1,∗h

−1
1 = id. Let p : M × [0, 1]→M be the projection. Then

Rhi,∗ ◦ h−1
i = Rh∗ ◦Rji,∗ ◦ j−1

i ◦ h
−1, i = 0, 1.

It suffices to show that Rj0,∗ ◦ j−1
0 = Rj1,∗ ◦ j−1

1 . Since p ◦ ji = id, there exist natural
transformations

Rji,∗ ◦ j−1
i → Rji,∗ ◦Rp∗, i = 0, 1.

Showing this is an isomorphism, by adjunction, is equivalent to showing for a constant
sheaf F = M[0,1], RΓ([0, 1],F )→ Ft is always an isomorphism. This follows from theorem
1.7. �

The following theorem, known as the microlocal cut-off lemma, is important when esti-
mating the singular support of a sheaf.

Definition 1.4. Let E be a vector space. s : E × E → E, (v1, v2) 7→ v1 + v2. Let F ,G ∈
Db(E). Then the convolution functor is

F ? G = Rs∗(p
−1
1 F ⊗ p−1

2 G ).

In the following theorem, by a conical subset γ in a vector space E we mean a subset
that is invariant under scaling. For a conical subset γ ⊂ E, its polar set is

γ∨ = {v ∈ E∨| 〈u, v〉 ≥ 0}.

Theorem 1.9 (Microlocal Cut-off Lemma). Let E be a vector space, γ ⊂ E be a closed
cone and F ∈ Db(E). Let

F ′ = Cone(kγ ?F → k0 ?F ).

Then SS(F ′) ∩ (E × (γ∨)◦) = ∅, and F ′ ' 0 iff

SS(F ) ⊂ E × (γ∨)◦.

Note that Kashiwara-Schapira used the push-forward functor via (−γ)-topology instead
of convolution with kγ , but the results are the same. In fact, one can prove that

RΓ(U,kγ ?F ) ' RΓ(U − γ,F ).

Proof of Theorem 1.9. Without loss of generality, we always assume that F has compact
support. By corollary of non-characteristic deformation lemma we have

RΓ(U,kγ ?F ) ' RΓ(s−1(U), π−1
1 kγ ⊗ π−1

2 F ) ' RΓ(s−1(U) ∩ (γ × E), π−1
2 F )

' RΓ(π2(s−1(U) ∩ (γ × E)),F ) ' RΓ(U − γ,F ).

First assume that kγ ? F ' k0 ? F . Then for any ξ /∈ γ∨, choose ϕ(x) = 〈x, ξ〉. Then
ϕ−1((−∞, 0))− γ = E.

RΓ(ϕ−1((−∞, 0)),F ) ' RΓ(ϕ−1((−∞, 0))− γ,F ) ' RΓ(E,F ).

Let i : ϕ−1((−∞, 0))→ E, then by taking derived global sections of the exact triangle

RΓϕ−1([0,+∞))(F )→ F → i∗i
−1F

[1]−→,
one can get that RΓϕ−1([0,+∞))(F ) ' 0, which means SS(F ) ⊂ E × γ∨.

Then assume that SS(F ) ⊂ E × γ∨. We show that for any open ball U we have

an isomorphism RΓ(U − γ,F )
∼−→ RΓ(U,F ), which will show, since open balls form a

neighbourhood system on a manifold, that

kγ ?F
∼−→ k0 ?F .
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In fact we appeal to the non-characteristic deformation lemma 1.7. Choose Ut (t ∈ R)
with smooth boundary so that

⋃
t∈R Ut = U − γ,

⋂
t∈R Ut = U, and the outward conormal

directions of Ut is contained in E∨\γ∨. Then the condition on SS(F ) ensures that

RΓE\Ut(F )x ' 0, ∀x ∈ Zt\Ut.

Hence by non-characteristic deformation lemma, we know that

RΓ(U − γ,F )
∼−→ RΓ(U,F ),

which means F ′ ' 0. �

Here are some examples of singular supports of sheaves.
Let U ⊂ M be an open submanifold with smooth boundary ∂U . Then SS(kU ) =

(T ∗∂UM)−, SS(kU ) = (T ∗∂UM)+, where + stands for the outward pointing normal vectors
and − stands for the inward pointing ones. We only check the first one here. Suppose U
is locally defined by a coordinate function ϕ1 > 0. Then on the coordinate chart, write
U = ϕ−1((0,+∞)),

RΓU (kU )0 = RH om(kU ,kU )0 = RHomDb(Rn)(kU ,kU )

= RHomDb(Rn)

(
iU,∗i

−1
U k, iU,!i−1

U k
)

= H∗c (U ;k) = k[n].

Along all the other directions, it is easy to check that RΓϕ−1([0,+∞))(kϕ1>0)0 = 0. Therefore
SS(kU ) = (T ∗∂UM)−.

Let N ⊂M be a closed submanifold. Then SS(kN ) = T ∗NM . In fact suppose that locally
N is defined by coordinate functions ϕ1 = ... = ϕk = 0. Then on the coordinate chart,
write N = 0× Rn−k, N⊥ = Rk × 0, Ui = ϕ−1

i ((0,+∞)), Vi = Ui ∩N⊥,

RΓUi(kN )0 = RH om(kUi ,kN )0 = RHomDb(Rn)(kUi ,kN )

= RHomDb(Rn)(π
−1
N⊥

kVi , π
−1
N⊥

k0) = RHomDb(N⊥)(kVi ,k0).

= RHomDb(N⊥)(iVi,!i
−1
Vi

k, k0) = RHomDb(N⊥)(k, iVi,∗i
!
Vi
k0)

= RΓ(N⊥,k0 ⊗ k) = k, 1 ≤ i ≤ k.

Therefore T ∗NM ⊂ SS(kN ). On the other hand, let ϕk+1, ..., ϕn coordinate functions on N .
On the coordinate chart,

RΓϕ−1
i ([0,+∞))(kϕ1=...=ϕk=0)0 = 0, k + 1 ≤ i ≤ n.

This shows that in fact SS(kN ) = T ∗NM .

Finally, let U = {(x, y)| − x3/2 < y ≤ x3/2} ⊂ R2. Then

SS(kU ) = {(x, y, ξ, η)|x = −(2ξ/3η)3, y = (2ξ/3η)2}.

In fact, set ϕ±(x, y) = y ± x3/2 when x ≥ 0 and y when x ≤ 0. Then

SS(kϕ−1
± ([0,+∞))) = {(x, y, λdϕ±(x, y))|λϕ±(x, y) = 0, λ ≥ 0, ϕ± ≥ 0}.

By proposition 1.6, we know that the result stated above is true. This is a standard local
model of a cusp for front projections of Legendrian knots.

1.3. Functorial Properties. In this section we study how the singular support changes
under functors between sheaves.

Proposition 1.10. Let f : M → N be a submersion, F ∈ Db(N). Then

SS(f−1F ) = fdf
−1
π (SS(F )).
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Proof. First we prove that

SS(f−1F ) ⊂ fdf−1
π (SS(F )).

Choose a local chart so that locally M = Rn, N = Rk, and f : M → N is the projection π :
(x′, x′′) 7→ x′. Pick (x′, x′′; ξ′, ξ′′) /∈ fd(f−1

π (SS(F ))). If ξ′′ 6= 0, then we let ϕ(x) = 〈x′′, ξ′′〉.
Since f−1F is constant along v when 〈v, ξ′′〉 < 0.

RΓϕ≥0(f−1F )x ' 0.

Thus (x′, x′′; ξ′, xi′′) /∈ SS(f−1F ). If ξ′′ = 0, then actually (x′, ξ′) /∈ SS(F ). Let ϕ(x) =
〈x′, ξ′〉. Since

Γϕ◦f≥0(f−1F )x = Γϕ≥0(F )x′ ,

(x′, x′′; ξ′, 0) /∈ SS(f−1F ).
Then we show that

fdf
−1
π (SS(G )) ⊂ SS(f−1G ).

This is because for any y ∈ f−1(x), we have

RΓϕ≥0(F )x = RΓϕ◦f≥0(f−1F )y,

which is essentially the chain rule. �

Definition 1.5. Let S ⊂M be a subset. Then NxS = TxM\Cx(M\S, S), N∗xS = (NxS)∨,
NS =

⋃
x∈M NxS and N∗S =

⋃
x∈M N∗xS.

Theorem 1.11. (1). Let i : U →M be an open embedding.
(i). Assume that SS(F ) ∩N∗Uop ⊂M ⊂ T ∗M . Then

SS(Ri∗i
−1F ) ⊂ SS(F ) +N∗U ;

(ii). Assume that SS(F ) ∩N∗U ⊂M ⊂ T ∗M . Then

SS(Ri!i
−1F ) ⊂ SS(F )−N∗U ;

(2). Let Z ⊂M be a closed subset.
(i). Assume that SS(F ) ∩N∗Z ⊂M ⊂ T ∗M . Then

SS(RΓZ(F )) ⊂ SS(F )−N∗Z;

(ii). Assume that SS(F ) ∩N∗Zop ⊂M ⊂ T ∗M . Then

SS(FZ) ⊂ SS(F ) +N∗Z.

Proof. (1). After choosing a local chart, we mat assume that M is a vector space. (i). For
ξ /∈ (SS(F ) ∩ π−1(x)) +N∗xU , we show that (x, ξ) /∈ SS(Ri∗i

−1F ). Now

(N∗xU − R≥0ξ) ∩ (−SS(F )) ⊂M ⊂ T ∗M.

Choose a conical neighbourhood γ ⊂ T ∗xM of (N∗xU −R≥0ξ) that is disjoint from −SS(F ).
Now consider γ∨ ⊂M . Choose a neighbourhood V of x ∈M such that V × γ∨ ∩SS(F ) ⊂
M . Let U0 ⊂ U1 ⊂ U0∪U be invariant under γ∨-translations. Then there are no differences
between sections on U0 and the ones on U1,

(kγ∨ ? RΓM\U0
(F ))U1 = 0.

Note that
γ∨ ⊂ {v ∈M | 〈v, ξ〉 < 0} ∪ {0}.

Hence U is invariant under γ∨-translation. Therefore

(kγ∨ ? RΓM\U0
(Ri∗i

−1F ))U1 ' Ri∗i−1(kγ ? RΓM\U0
(F ))U1 = 0.

This completes the proof of (i). For (ii) the proof is basically the same.
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(2). Let U = M\Z and i : U →M be the embedding. The result follows from the exact
triangles

RΓZ(F )→ F → Ri∗i
−1F

[1]−→, Ri!i−1F → F → FZ
[1]−→ .

Thus we are through. �

Definition 1.6. Let f : M → N be a continuous map between manifolds, Λ ⊂ T ∗N be a
closed conical subset. f is non-characteristic for Λ (or Λ is non-characteristic for f) if

f∗(Λ) ∩ T ∗MN ⊂M ⊂ f∗T ∗N.

For F ∈ Db(N), f is non-characteristic for F if it is for SS(F ).

Theorem 1.12. Let F ∈ Db(N) and f : M → N be non-characteristic. Then

SS(f−1F ) ⊂ fdf−1
π (SS(F )).

Proof. We decompose the map f : M → N into a closed embedding id× f : M → M ×N
and a submersion M ×N → N . Theorem 1.10 has already dealt with the submersion case,
so it suffices to check the closed embedding case.

For closed embeddings Z → M , by induction on dimensions, we may assume that Z is
a hypersurface. In addition, we may assume that M\Z = U+ t U−, and the corresponding
embeddings are i± : U± →M . Then consider the exact sequence

Ri+,!i
−1
+ F ⊕Ri−,!i−1

− F → F → FZ
x−→ .

Then by Theorem 1.11 we can tell that

SS(FZ) ⊂ SS(F ) + T ∗ZM.

This completes the proof. �

Proposition 1.13. Let M,N be C∞-manifolds, F ∈ Db(M), and G ∈ DbSh(N). Then

SS(π−1
M F ⊗ π−1

N G ) ⊂ SS(F )× SS(G ),

SS(RH om(π−1
M F , π−1

N G )) ⊂ (−SS(F ))× SS(G ).

Definition 1.7. Let A ⊂ T ∗M,B ⊂ T ∗N . Then

Cµ(A,B) = CT ∗M (M×N)(A,−B) ⊂ TT ∗M (M×N)T
∗(M ×N) ' T ∗(M ×N TN).

Let p : M ×N TN →M be the projection. Then

f#(A,B) = pπp
−1
d (Cµ(A,B)) = T ∗M ∩ Cµ(A,B).

When M = N and f = id, then A+̂B = id#(A,−B) ⊂ T ∗M .

Theorem 1.14. Let i : U →M be an open embedding, F ∈ Db(U). Then

SS(Ri∗F ) ⊂ SS(F )+̂N∗U,

SS(Ri!F ) ⊂ SS(F )+̂(−N∗U).

The idea of the proof is the following. We want to show that F is non-characteristic
for N∗U . Then one can apply Theorem 1.11. However, this cannot be done because first
there is not even a pull-back functor here, and second directly showing non-characteristicity
seem to be hard. Therefore we approximate U by a sequence of subsets Ut and prove non-
characteristicity for jt : Ut →M . In order to do that we need the following lemma.

Definition 1.8. Let {An, ρm,n}m,n≥0 be a projective system of abelian groups. It satisfies
Mittag-Leffler condition if {ρm,n(Xn)}n≥m is stationary for any m ≥ 0.
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Lemma 1.15. Let F ∈ Db(M), {Un}n≥0 be an increasing sequence of open subsets and
{Zn}n≥0 a decreasing sequence of closed subsets. Set U =

⋃
n≥0 Un, Z =

⋂
n≥0 Zn.

(1). The natural map Hj
Z(U,F )→ lim←−n≥0

Hj
Zn

(Un,F ) is surjective;

(2). Assume that {Hj−1
Zn

(Un,F )}n≥0 satisfies Mittag-Leffler condition, then Hj
Z(U,F )

→ lim←−n≥0
Hj
Zn

(Un,F ) is an isomorphism.

Proof of Theorem 1.14. We only show the first assertion. Let (x0, ξ0) /∈ SS(F )+̂N∗U , and

in fact assume that x0 ∈ supp(F ) ∩ ∂U , ξ0 6= 0. This means (x0, ξ0) /∈ SS(F ). Since ξ0 /∈
N∗x0

U , we may assume that for some closed cone γ we have U +γ = U , N∗x0
U ⊂ (γ∨)◦∪{0}

and ξ0 /∈ γ∨.
We choose v0 ∈ γ◦ and define in a local chart

Hs = {x ∈ Rn| 〈x− x0, ξ0〉 > −s}, Us,t = {x ∈ Rn|x− tv0(〈x− x0, ξ0〉+ s) ∈ U}.
They satisfy the following conditions that (for 0 < t < t′)

U s,t ∩Hs ⊂ U s,t′ ∩Hs ⊂ U,
⋃
t>0

Us,t ∩Hs = U ∩Hs.

Now we claim that one can find a neighbourhood V ×W of (x0, ξ0) such that for Vs = V ∩Hs,
s, t > 0 small,

SS(F ) ∩ (−N∗Us,t) ∩ π−1(Vs) ⊂M ⊂ T ∗M ;

(SS(F ) +N∗Us,t) ∩ (Vs ×W ) = ∅.
If either of the assertion fails, then one can choose sequences such that

sn, tn → 0, xn → x0, ζn ∈ N∗xnUsn,tn\{0},

(xn, ξn) ∈ SS(F ), ξn + ζn = cξ̃n, ξ̃n → ξ0

(c = 0 for the first condition, c = 1 for the second). We define (yn, ηn) by

yn = xn + tnv0(〈xn − x0, ξ0〉+ sn), ξn = ηn − tn 〈ηn, v0〉 ξ0,

and set ρn = ζn + ηn. Then ηn ∈ γ∨ and

ξ0, ξ̃n, ηn, ρn ∈ −{v0}∨, |ηn| ≤ C 〈ηn, v0〉 , C|ρn| ≥ − 〈ρn, v0〉 .
Therefore ρn/|ρn| → ξ0/|ξ0|, (xn, ζn/|ρn|) ∈ SS(F ), (yn, ηn/|ρn|) ∈ N∗U . Hence (x0, ξ0/|ξ0|) ∈
SS(F )+̂N∗U . A contradiction. This proves the assertions.

Fix s > 0 small. Let Ft = Rjs,t,∗(F |Us,t). Then the non-characteristicity tells us that

SS(Ft) ∩ (Vs ×W ) = ∅.
Let U0 ⊂ U1 be invariant under γ′-translation for γ′ ⊂ {ξ0}∨ ∪ {0} and x0 ∈ U1\U0 ⊂ Hs.
Then

(kγ′ ? RΓU1\U0
(Ft)) = 0, ∀ t > 0.

Now we apply Proposition 1.15 to deduce that (kγ′ ? RΓU1\U0
(F )) = 0. Hence (x0, ξ0) /∈

SS(F ). �

1.4. Microlocal Morse Theory. As we have seen in the non-characteristic deformation
lemma, the notion of singular support detects how sections of sheaves propagate/extend, if
a family of open subsets Ut (t ∈ R) does not pass SS(F ), then for s > t,

RΓ(Us,F )
∼−→ RΓ(Ut,F ).

This may remind us of Morse theory, where if ϕ−1([a, b]) does not contain critical points,
then one have

H∗(ϕ−1((−∞, b]);k)
∼−→ H∗(ϕ−1((−∞, a]);k).
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Indeed, we can generalize Morse theory about (cohomology) of costant sheaves k to general
sheaves.

Lemma 1.16. For F ∈ Db(R) such that SS(F ) ∩ T ∗[a, b] ⊂ T ∗≤0[a, b], there is an isomor-
phism

RΓ((−∞, b],F )
∼−→ RΓ((−∞, a],F ).

This lemma follows immediately from the non-characteristic deformation lemma.

Theorem 1.17. Let F ∈ Db(M) and ϕ ∈ C1(M) a proper function such that for any
x ∈ ϕ−1([a, b]), dϕ(x) /∈ SS(F ). Then there is an isomorphism

RΓ(ϕ−1((−∞, b]),F )
∼−→ RΓ(ϕ−1((−∞, a]),F ).

Proof. Note that since ϕ is proper, we have

RΓ(ϕ−1((−∞, a]),F ) ' RΓ((−∞, a], Rϕ∗F ).

The result follows from the singular support estimate SS(Rϕ∗F ) ⊂ ϕπϕ−1
d (SS(F )) which

is contained in the zero section. �

Theorem 1.18 (Morse Inequality). Let F ∈ Db(M) and ϕ ∈ C1(M) be proper, and
supp(F ) ∩ ϕ−1((−∞, t]) is compact. Let Λϕ = {(x, dϕ(x))|x ∈M}. Suppose that

Λϕ ∩ SS(F ) = {(x1, ξ1), ..., (xn, ξn)}
and Vi = RΓϕ≥ϕ(xi)(F )xi is of finite dimension. Then RΓ(M,F ) is of finite dimension,
and ∑

j≤l
(−1)l−j dimHj(M,F ) ≤

∑
1≤i≤n

∑
j≤l

dimHj(Vi),

∑
j

(−1)j dimHj(M,F ) =
∑

1≤i≤n

∑
j

(−1)j dimHj(Vi).

Here x1, ..., xn are the generalization of Morse critical points, and dimHj(Vi) is the
generalization of Morse index.

Proof. Note that since ϕ is proper,

RΓ[t,+∞)(Rϕ∗F )t = RΓ(ϕ−1(t), RΓϕ−1([t,+∞))(F )) =
⊕

ϕ(xi)=t

RΓϕ−1([t,+∞))(F ))xi .

Therefore, again it suffices to work on R. We consider the exact triangle

RΓ[ti,+∞)(F )ti → RΓ((−∞, ti],F )→ RΓ((−∞, ti),F )
[1]−→ .

By non-characteristic deformation lemma we have

RΓ((−∞, ti],F ) ' RΓ((−∞, ti+1),F ).

Since supp(F ) ∩ ϕ−1((−∞, t]) is compact, we can prove by induction that RΓ(R,F ) has
finite dimension. Now we use the exact triangle. This will give us the inequalities we
want. �

2. Constructibility

We will prove in Theorem 3.16 that the singular support of a sheaf is a coisotropic subset
in T ∗M . The simplest coisotropic subsets are Lagrangian subsets. We will study these
sheaves in this section. In fact, such sheaves can be viewed as stratified local systems,
whose singular support is contained in the conormal bundle of the stratification.



SHEAF THEORY IN SYMPLECTIC GEOMETRY 11

2.1. Cohomological Constructibility. Before talking about singular supports and s-
tratifications, let’s first introduce the following notion of a cohomologically constructible
sheaf. Basically most abstract properties we need will follow from the cohomologically
constructible condition.

Definition 2.1. Let C be a category, and I be a filtrant category. Let Fi (i ∈ I) be an
inductive system in C. Then lim−→i∈IFi is the functor

Cop → Set, X 7→ lim−→
i∈I

HomC(X,Fi).

Definition 2.2. A sheaf F ∈ Db(M) is cohomologically constructible if
(1). lim−→U :x∈URΓ(U,F ) and lim←−U :x∈URΓc(U,F ) are representable;

(2). lim−→U :x∈URΓ(U,F )
∼−→ Fx and RΓ{x}(F )

∼−→ lim←−U :x∈URΓc(U,F );

(3). Fx and RΓ{x}(F ) are perfect.

Proposition 2.1. Let F ∈ Db(M) be cohomologically constructible. Then
(1). DF is cohomologically constructible;
(2). F 7→ DDF is an isomorphism;
(3). RΓ{x}(M,DF ) = RHom(Fx, k) and (DF )x = RHom(RΓ{x}(M,F ),k).

Proposition 2.2. Let F ∈ Db(M) be cohomologically constructible. Then

DF � G ' RH om(π−1
1 F , π!

2G ),

D′F � G ' RH om(π−1
1 F , π−1

2 G ).

Proposition 2.3. Let F ,G ∈ Db(M) be cohomologically constructible. Then

RH om(F ,G ) ' RH om(DF , DG ) ' D (DF ⊗ G ) .

2.2. Subanalytic Stratification. Now we define what a constructible sheaf is. Basically
it is a stratified local system. In order to state the definition, we should first explain what
kind of stratification we will be considering - it is the subanalytic stratification.

Definition 2.3. A subset Z ⊂ M is subanalytic at x ∈ M if there exists an open neigh-
bourhood U of x, and compact manifolds Y i

j (i = 1, 2, 1 ≤ j ≤ N) and f ij : Y i
j →M analytic

functions such that

Z ∩ U = U ∩

 ⋃
1≤j≤N

f1
j (Y 1

j )\f2
j (Y 2

j )

 .

Z is a subanalytic set if it is subanalytic at any point.

Lemma 2.4 (Curve selection lemma). Let Z ⊂M be subanalytic and x0 ∈ Z. Then there
exists an analytic path x : [0, 1] 7→M so that x(0) = x0 and x((0, 1]) ⊂ Z.

Definition 2.4. (1). A partition M =
⊔
i∈IMi is called a subanalytic stratification if it is

locally finite, all Mi’s are subanalytic subsets and for any i, j ∈ I, M i∩Mj 6= ∅ iff Mj ⊂M i.
(2). A partition M =

⊔
i∈IMi is called a µ-stratification if it is subanalytic and for any

i, j ∈ I, Mj ⊂M i\Mi, we have(
T ∗Mi

M+̂T ∗Mj
M
)
∩ π−1(Mj) ⊂ T ∗Mj

M.

Theorem 2.5. Let M =
⋃
i∈IMi be a locally finite subanalytic covering. Then there exists

a refinement M =
⊔
i′∈I′M

′
i′ being a µ-stratification.
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Definition 2.5. Let F ∈ Db(M). F is weakly R-constructible if there exists a locally finite
covering M =

⋃
i∈IMi by subanalytic sets such that for any i ∈ I, j ∈ Z, HjF |Mi is locally

constant. The full subcategory of weakly R-constructible sheaves is Db
R-con,weak(M).

F is R-constructible if in addition for any x ∈M , Fx is perfect. The full subcategory of
R-constructible sheaves is Db

R-con(M).

The following theorem characterises the microlocal behaviour of a constructible sheaf. In
short, a constructible sheaf is a sheaf with singular support being a conical Lagrangian.

Theorem 2.6. Let F ∈ Db(M). Then the following are equivalent:
(1). F ∈ Db

R-con,weak(M);

(2). SS(F ) is contained in a closed subanalytic isotropic subset;
(3). SS(F ) is a closed conical Lagrangian subset.

Proposition 2.7. Let F ∈ Db(M) and M =
⊔
i∈IMi be a stratification by subanalytic

sets. Then the following are equivalent:
(1). for all i ∈ I, j ∈ Z, HjF |Mi is locally constant;
(2). SS(F ) ⊂

⊔
i∈I T

∗
Mi
M .

Now our goal is to show that the notion of R-constructibility implies cohomologically
constructibility we introduced in the previous section. First we need a simple lemma which
is essentially Sard theorem.

Lemma 2.8 (Microlocal Bertini-Sard theorem). Let ϕ ∈ C1(M) be proper Λ ⊂ T ∗M be a
closed conical subanalytic isotropic set. Then S = {t ∈ R|∃x ∈ M,ϕ(x) = t, dϕ(x) ∈ Λ} is
discrete.

Proposition 2.9. Let F ∈ Db
R-con(M). Then F is cohomologically constructible.

Proof. First we show representability and the isomorphisms

lim−→U :x∈URΓ(U,F )
∼−→ Fx, RΓ{x}(F )

∼−→ lim←−U :x∈URΓc(U,F ).

Choose a proper real analytic function ϕ : M → Rn. We show that there is a natural
isomorphism for ε > 0 small enough,

RΓ(ϕ−1(Bε(0)),F )
∼−→ RΓ(ϕ−1(0),F ),

RΓϕ−1(0)(F )
∼−→RΓc(ϕ

−1(0),F ).

Let Λ = SS(F ) and apply the microlocal Bertini-Sard theorem, then these isomorphisms
hold by microlocal cut-off lemma.

Then it suffices to show that RΓ{x}(M,F ) is perfect. In fact consider the exact triangle

RΓ{x}(M,F )→ RΓ(Bε(x),F )→ RΓ(Bε(x)\{x},F )
[1]−→ .

One can prove RΓ(Bε(x)\{x},F ) ' RΓ(Sε/2(x),F ), but since the projection by the radius
function is proper, constructibility is preserved and hence RΓ(Sε/2(x),F ) is perfect. On
the other hand, RΓ(Bε(x),F ) ' Fx is also perfect. Thus we are done. �

One can in fact find the generators of the category of constructible sheaves.

Theorem 2.10 (Nadler). Let T = {τα|α ∈ I} be a subanalytic triangulation, Db
T (M) be the

derived category of T -constructible sheaves. Let CT (M) be the full subcategory of jα,∗kτα.

Then Db
T (M) is the triangulated envelope of CT (M).
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Proof. Let i≥k : T≥k → M be the inclusion of all simplices with dimension greater than or
equal to k, and j<k : T<k →M be the inclusion of all simplices with dimension less than k.
Let Db

T≥k(M) be the subcategory of sheaves F ' i≥k,∗i−1
≥kF .

It is easy to realize that Db
T≥n(M) is generated by jα,∗kτα . Suppose we already know for

l > k Db
T≥l(M) is generated by jα,∗kτα . Then we consider Db

T≥k(M). Note that we have the

following exact triangle

RΓT<k+1
(F )→ F → i≥k+1,∗i

−1
≥k+1F

[1]−→ .

Since F ' i≥k,∗i−1
≥kF we know by the exact triangle

RΓT<k(F )→ F → i≥k,∗i
−1
≥kF

[1]−→

that RΓT<k(F ) ' 0. Now apply RΓT<k to the first exact triangle we know that

RΓT<kRΓT<k+1
(F ) ' 0.

However by the second exact triangle this means that RΓT<k+1
(F ) is in Db

T≥k(M) and hence

must be supported on dimension k simplices. Therefore by induction Db
T (M) is generated

by jα,∗kτα . �

Similarly if one consider C′T (M) consisting of jα,!kτα the same result holds.

3. Microlocalization

Denote by Db
Λ(M) the full subcategory of Db(M) whose singular support is in Λ ⊂ T ∗M .

Consider Λ ⊂ T ∗M . The motivation of microlocalization is to focus on the behaviour of
sheaves along Λ. Therefore we enforce all the sheaves in Db

M∪T ∗M\Λ(M) to be zero, which

means we consider the localization category

Db(M,Λ) = Db(M)/Db
M∪T ∗M\Λ(M).

and µhom(F ,G ) = HomDb(M,Λ)(F ,G ).
Alternatively, one can avoid using localization of categories and explicitly define microlo-

calization and the functor µhom.

3.1. Specialization. Let N ⊂M be a submanifold. Consider the normal deformation M̃N

of M along N , so that there is a projection p : M̃N →M . p−1(M\N) = (M\N)× (R\{0}),
p−1(N) = TNM ∪ N × R. There is also a projection t : M̃N → R so that t|p−1(N) = 0,
t|p−1(M\N) is the canonical projection.

Locally, let {Ui}i∈I be an open cover of M , ϕi : Ui → Rn be coordinate systems so that
Ui ∩N = ϕ−1(0× Rn−k). Define

Vi = {(x, t) ∈ Rn × R|(tx′, x′′) ∈ ϕi(Ui)},
and the transition functions gij satisfy

(tg′ij(x, t), g
′′
ij(x, t)) = ϕj ◦ ϕ−1

i (tx′, x′′).

The normal bundle TNM is blown up to encode the information of normal directions to N .
t is a rescaling factor to shrink the distance from a point to N , so that one doesn’t need to
worry about the influence on the normal direction coming from the distance factor.

Furthermore, we should make a remark here that in fact the normal deformation is given
by the real blowup, M̃N = BlN×0(M × R)\BlNM .

Write M̃N+ = t−1((0,+∞)), p+ : M̃N,+ the restriction of p : M̃ →M . There is a diagram

TNM
s−→ M̃N

j←− M̃N,+.



14 WENYUAN LI

Figure 1. When M = R2, N = {0}, V = {(r, θ)|θ < π/10} on the left and
open subsets U such that CN (M\U) ∩ V = ∅ on the right.

Definition 3.1. Let S ⊂ M be locally closed. Then the Whitney normal cone along N is

CN (S) = p−1
+ (S)∩ TNM . Let S1, S2 ⊂M be locally closed. Then the Whitney normal cone

is C(S1, S2) = C∆(S1 × S2).

Basically, CN (S) is the limit points of p−1
+ (S) in TNM . When a point (x, t) ∈ p−1

+ (S)
approaches the normal bundle, this means under the projection (tx′, x′′) ∈ M approaches
N along the corresponding normal direction. One can see that the factor t shrinks the
distance between the point and N . The following proposition is elementary.

Proposition 3.1. Let x = (x′, x′′) be a local coordinate system on M such that N is defined
by x′ = 0. Then (x, ξ) ∈ CN (S) iff there exists a sequence (x′n, x

′′
n, cn) in S × R+ such that

(x′n, x
′′
n)→ x, cnx

′
n → ξ.

Now we define what the specialization of a sheaf is. The idea is that, we want to detect the
behaviour of a sheaf after contracting everything to an infinitesimal normal neighbourhood
of N . Therefore we pull the sheaf back to the normal deformation along N and focus on
the behaviour on the normal bundle TNM .

Definition 3.2. Let N ⊂M , F ∈ Db(M). Then the specialization of F along N is

νNF = s−1Rj∗p
−1
+ F .

Theorem 3.2. Let V ⊂ TNM be an open conical subset. Then

Hj(V, νNF ) = lim−→
U :CN (M\U)∩V=∅

Hj(U,F ).

Let’s first look at an example (Figure 1) to see what this theorem says. Consider M = R2,
N = {0}, V = {(r, θ)|θ < π/10}. Then CN (M\U) ∩ V = ∅ means the points in M\U
approach V along a direction away from V , so M\U is away from V infinitesimally. In this
case, the theorem says the sections of νNF on V are direct limit of sections of F on certain
neighbourhoods of V .

Proof of Theorem 3.2. Let U ⊂ M be an open subset such that CN (M\U) ∩ V = ∅. Note
that p−1

+ (U) ∪ V is a neighbourhood of V (see Figure 2). There are natural morphisms

RΓ(U,F )→ RΓ(p−1(U), p−1F )→ RΓ(p−1(U) ∩ M̃N,+, p
−1F )

→ RΓ(p−1
+ (U) ∪ V,Rj∗j−1p−1F )→ RΓ(V, νNF ).

Therefore one gets a canonical morphism

lim−→
U :CN (M\U)∩V=∅

Hj(U,F )→ Hj(V, νNF ).
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Figure 2. Let M = R2, N = {0}. The left hand side is M̃N , where the
red region is p−1(N), the grey slice is a copy of M , and the black curves are
two components of p−1(x) ' {x} ×R×. Let U ⊂M,V ⊂ TNM be as in the
previous figure so that C(M\U)∩V = ∅. The right hand side shows p−1

+ (U)
as the blue region and a cone V ⊂ TNM as the orange region. One can see
why p−1

+ (U) ∪ V is a neighbourhood of V .

On the other hand, we know that

Hj(V, νNF ) = lim−→
W⊃V

Hj(W,Rj∗j
−1p−1F ) = lim−→

W⊃V
Hj(W ∩ M̃N,+, p

−1F ).

If the neighbourhoods W so that p|W∩M̃N,+
has connected fibers form a basis of V , then

we may assume that when taking the direct limit, p|W∩M̃N,+
always has contractible fibers.

By the non-characteristic deformation lemma, Rp∗p
−1F = F . Consequently

Hj(W ∩ M̃N,+, p
−1F ) = Hj(p(W ∩ M̃N,+), Rp∗p

−1F ) = Hj(p(W ∩ M̃N,+),F ).

As all the subsets U such that CN (M\U)∩V = ∅ are of the form p(W ∩M̃N,+), we’re done.
It suffices to check that the neighbourhoods W so that p|W∩M̃N,+

has contractible fibers

form a basis of V . Pick any neighbourhood W0 of V . We consider SM̃N = (M̃N\(M ×
R))/R+. By choosing a section on SM̃N , we can choose a connected component for each

fiber of W0 ∩ (M̃N\(M × R)). Let the union be W1. W1 is an open neighbourhood of
V ∩ (TNM\M). To get an open neighbourhood of V , we just let W = V ∪W1 ∪ (W0 ∩
t−1((−∞, 0))). This completes the proof. �

Proposition 3.3. Let F ∈ Db(M). Then there is an exact triangle

RΓN (F )|N → F |N → Rπ̇∗νNF
[1]−→ .

Proof. Consider the exact triangle

RΓN (νNF )|N → Rπ∗νNF → Rπ̇∗νNF
[1]−→ .

It suffices to show that there are canonical isomorphisms

RΓN (νNF )|N ' RΓN (F )|N , Rπ∗νNF ' F |N .



16 WENYUAN LI

Figure 3. On the left is a constant sheaf supported on the interior of the
standard cusp (the grey region, boundary not included), and on the right is
its specialization along the origin (the red point).

Figure 4. 1. On the left is the singular support of a constant sheaf sup-
ported on the interior of the standard cusp (the grey region, boundary not
included); 2. in the middle is the normal cone of its singular support, where
the blue color is representing the components in the base and the green col-
or is representing components in the fibers; 3. on the right is the singular
support of its specialization along the origin, where now green stands for
components in the base and blue stands for components in the fibers. The
blue components and the green components are corresponding to each other
by dualization.

Let i : N → TNM be the zero section. Then by the definition of specialization and the
previous theorem we have

FN ' i−1s−1π−1F
∼−→ i−1s−1Rj∗j

−1π−1F ' νNF |N .
Since π : TNM → N has contractible fiber, we know

νNF |N ' i−1νNF
∼−→ Rπ∗π

−1i−1νNF ' Rπ∗νNF .

This proves the first isomorphism. The second isomorphism is similar as RΓN (F )|N '
i−1F . �

In addition, we can estimate the singular support of the specialization in terms of the
singular support of the original sheaf. An example is illustrated in Figure 3 and 4.

Proposition 3.4. Let F ∈ Db(M). Then

SS(νNF ) ⊂ CT ∗NM (SS(F )).

Proof. Fix a local chart U so that on that local chart M = Rn, N = 0×Rn−k. Locally the
normal deformation is M̃N = Rn × R, where t : M̃N → R; (x′, x′′, t) 7→ t, and p : M̃N →
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Figure 5. SS(kR), SS(k0), SS(k(0,∞)) and SS(k[0,∞)). The grey line is the
zero section R ⊂ T ∗R.

R; (x′, x′′, t) 7→ (tx′, x′′). We have

SS(p−1
+ F ) = {(x, t; ξ, τ)|t > 0, tτ −

〈
x′, ξ′

〉
= 0, (tx′, x′′; t−1ξ′, ξ′′) ∈ SS(F )}.

For any (x′0, x
′′
0; ξ′0, ξ

′′
0 ) ∈ SS(νMF ), there exists (x′n, x

′′
n, tn; ξ′n, ξ

′′
n, τn) ∈ SS(p−1

+ F ) so that

tn → 0, tnτn → 0, (x′n, x
′′
n; ξ′n, ξ

′′
n)→ (x′0, x

′′
0; ξ′0, ξ

′′
0 ).

Since (tnx
′
n, x
′′
n; t−1

n ξ′n, ξ
′′
n) ∈ SS(F ), we know (by scaling) (tnx

′
n, x
′′
n; ξ′n, tnξ

′′
n) ∈ SS(F ).

Therefore (x′0, x
′′
0; ξ′0, ξ

′′
0 ) ∈ CT ∗NM (SS(F )). �

3.2. Microlocalization. For microlocalization, instead of working with normal bundles,
we work with conormal bundles. This means we will nee to pass from a vector bundle to
its dual vector bundle. The corresponding transformation on sheaves is call Fourier-Sato
transform.

Definition 3.3. Let π : E → M be a vector bundle and π∨ : E∨ → M its dual bundle,
p1 : E ⊕ E∨ → E, p2 : E ⊕ E∨ → E∨. Let

D = {(x, u, v∨)|
〈
u, v∨

〉
≤ 0}.

Then the Fourier-Sato transform of F ∈ Db(E) is

F∧ = Rp2,!(p
−1
1 F )D.

Let D′ = {(x, u, v∨)| 〈u, v∨〉 ≥ 0}. Then the inverse Fourier-Sato transform of G ∈ Db(E∨)
is G ∨ = Rp1,!(p

!
2G )D′ .

Let’s consider some examples. Let M = pt and E = E∨ = R. Then D = {(x, y) ∈
R2|xy ≤ 0}. Let’s compute k∨ = Rp2,!(p

−1
1 k)D = Rp2,!kD. For y 6= 0, its stalk is

(k∧)y = RΓc(p
−1
2 (y),kD) = H∗c ([0,+∞);k) = 0.

For y = 0, its stalk is

(k∧)0 = RΓc(p
−1
2 (0),kD) = H∗c (R;k) = k[−1].

Therefore, k∧ = k0[−1].
For the skyscraper sheaf k0, let’s also compute k∨0 = Rp2,!(p

−1
1 k0)D = Rp2,!k{(x,y)|x=0}.

For y ∈ R, its stalk is

(k∧)y = RΓc(p
−1
2 (y), k{(x,y)|x=0}) = H∗c (pt;k) = k.

Therefore, k∧0 = k.
Similarly, we can also get k∧[0,∞) = k(0,∞), and k∧(0,∞) = k(−∞,0][−1]. Therefore, when

considering the singular support of these sheaves, in dimension 1, we can see that Fourier-
Sato transform is actually rotating the singular support by 90 degrees.
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Before stating any propositions, let’s recall the following notation. Let γ ⊂ E be a cone.
Then

γ∨ = {v ∈ E∨| 〈u, v〉 ≥ 0, ∀u ∈ γ}.

Lemma 3.5. Let γ be a closed proper convex cone containing the zero section. Then

(kγ)∧ ' k(γ∨)◦ .

Let γ be an open convex cone. Then

(kγ)∧ ' k−γ∨ ⊗ orE∨ [−n].

Proof. We only prove the first isomorphism. In fact, for any y ∈ E∨,(
(kγ)∧

)
y

= RΓc(p
−1
2 (y),k(γ×E∨)∩D) = RΓc(p1(p−1

2 (y) ∩D) ∩ γ,k).

When y /∈ (γ∨)◦, p1(p−1
2 (y) ∩D) ∩ γ is a closed proper cone, so

RΓc(p1(p−1
2 (y) ∩D) ∩ γ,k) ' H∗c (Rn≥0;k) = 0.

When y ∈ (γ∨0◦, p1(p−1
2 (y) ∩D) ∩ γ = 0. Hence

RΓc(p1(p−1
2 (y) ∩D) ∩ γ,k) ' H∗c (pt;k) = k.

This shows (kγ)∧ ' k(γ∨)◦ . �

Theorem 3.6. The Fourier-Sato transform induces an equivalence Db(E) → Db(E∨). In
particular,

RHom(F ,G ) = RHom(F∧,G ∧).

Proof. It suffices to show that the Fourier-Sato transformation gives an equivalence of cat-
egories. In fact we show that

F → F∧∨

is an equivalence. For any conical open subset U ⊂ E, by adjunction we have

Hj(U,F∧∨) = Hom(kU ,F∧∨[j]) = Hom((kU )∧∨,F [j]).

Therefore, it suffices to check that kU → (kU )∧∨[n] is an equivalence. �

Proposition 3.7. Let γ ⊂ E∨ be a closed proper cone containing the zero section. Then

RΓγ(E∨,F∧) ' RΓ((−γ∨)◦,F )⊗ ωE/M ,
where γ∨ = {x ∈ E| 〈x, y〉 ≥ 0, y ∈ γ}.

Proof. The result follows from the fact that RΓγ(E∨,F ) = RHom(kγ ,F ). �

We estimate the singular support of Fourier-Sato transform in the following proposition.

Proposition 3.8. Let E be a vector space (vector bundle), F ∈ Db(M). Then

SS(F∧) = SS(F ).

Proof. Since Fourier-Sato transformation is an equivalence, it suffices to show that SS(F∧) ⊂
SS(F ). Suppose (x, ξ) /∈ SS(F ). We will show that (ξ,−x) /∈ SS(F∧).

Without loss of generality, we assume that E is a vector space. First suppose

RΓ0(F ) = 0.

Denote j : E\0 → E, j̃ : (E\0) × E∨ → E × E∨ and p̃2 : (E\0) × E∨ → E∨. Then
Rj∗j

−1F ' F .

F∧ ' Rp2,!RΓD′(p
−1
1 Rj∗j

−1F ) = Rp2,!RΓD′(Rj̃∗j̃
−1p−1

1 F )

= Rp2,!Rj̃!j̃
−1RΓD′(p

−1
1 F ) = Rp̃2,!j̃

−1RΓD′(p
−1
1 F ).
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If (ξ,−x) ∈ SS(F∧), then by Proposition, there exists y ∈ E∨ such that (y, ξ; 0,−x) ∈
SS(RΓD′(p

−1
1 F )). Now since RΓD′(p

−1
1 F ) = RH om(kD′ , p−1

1 F ), by Proposition there
exists η ∈ T ∗yE∨ such that

(y, ξ; η, 0) ∈ SS(p−1
1 F ), (y, ξ; η, x) ∈ SS(kD′).

Thus (y, η) ∈ SS(F ), x = λy and ξ = λη. However, SS(F ) is invariant under the R+-
action (x; ξ) 7→ (λx, λ−1ξ). This shows a contradiction.

In general, if RΓ0(F ) 6= 0, then we consider the exact triangle

RΓ0(F )→ F → Rj∗j
−1F

[1]−→ .

It suffices to show that (ξ,−x) /∈ SS(RΓ0(F )∧). Write i : 0 → E. We have RΓ0(F )∧ '
(i!i
−1F )∧. Since i!i

−1F is supported at 0, we know it is a skyscraper sheaf supported
at 0. Therefore (i!i

−1F )∧ is a constant sheaf on E∨. This shows that as long as x 6= 0,
(ξ,−x) /∈ SS(RΓ0(F )∧).

Finally to resolve the issue that x = 0 or ξ = 0, we add an extra factor kR×0 ∈ Db(R2).
Consider

F � kR×0 = π−1
E F ⊗ π−1

R2 kR×0.

Then apply the previous argument. Since SS(kR×0) = {(x, 0; 0, η)|x, η ∈ R}, we are
through. �

Now we are able to define microlocalization in terms of the Fourier-Sato transform of the
specialization.

Definition 3.4. Let N ⊂ M , F ∈ Db(M). The microlocalization along N is µNF =
νNF∧ ∈ Db(T ∗NM).

The following theorems follow from the properties of specialization and Fourier-Sato
transform.

Theorem 3.9. Let V ⊂ TNM be an open conical subset, F ∈ Db(M). Then

Hj(V, µNF ) = lim−→
U :U∩N=π(V );Z:CN (Z)⊂V ∨

Hj
U∩Z(U,F ).

Proposition 3.10. Let F ∈ Db(M). Then there is an exact triangle

F |N ⊗ ωN/M → RΓN (F )|N → Rπ̇∗µNF
[1]−→ .

Proof. Consider the following exact triangle

RΓN (µNF )→ Rπ∗µNF → Rπ̇∗µNF
[1]−→ .

We prove that there are natural isomorphisms RΓN (µNF ) ' F |N ⊗ ωN/M , Rπ∗µNF '
RΓN (F )|N . �

Proposition 3.11. Let F ∈ Db(M). Then

SS(µNF ) ⊂ CN (SS(F )).

3.3. The Functor µhom. In this subsection we define the functor µhom by microlocaliza-
tion along the diagonal.

Definition 3.5. Let δ : T ∗M → T ∗∆(M ×M) be the isomorphism (x, ξ) 7→ (x, x, ξ,−ξ).
Then for F ,G ∈ Db(M),

µhom(F ,G ) = δ−1µ∆RH om(p−1
1 F , p!

2G ).
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Proposition 3.12. Let E be a vector space (vector bundle), F ,G ∈ Db(E). Let (x, ξ) ∈
T ∗E. Then

Hjµhom(F ,G )(x,ξ) = lim−→
U :x∈U ; γ⊂({ξ}∨)◦∪{0}

Hj(RΓ(U,RH om(kγ ?FU ,G ))).

Proof. Let γ ⊂ E be a proper closed cone. We can define

Zγ = {(x, x′) ∈ E × E|x− x′ ∈ γ}.
Then C∆(Zγ) ⊂ {ξ}∨. Hence as the open subsets U × U give a neighbourhood system of
(x, x), by theorem 3.9,

Hjµhom(F ,G )(x,ξ) = lim−→
U :x∈U ; γ⊂({ξ}∨)◦∪{0}

Hj(RΓZγ (U × U,RH om(p−1
2 F , p!

1G )))

= lim−→
U :x∈U ; γ⊂({ξ}∨)◦∪{0}

Hj(RΓ(U ×X,RH om((p−1
2 FU )Zγ , p

!
1G )))

= lim−→
U :x∈U ; γ⊂({ξ}∨)◦∪{0}

Hj(RΓ(U,RH om(Rp1,!((p
−1
2 FU )Zγ ),G ))).

Now it suffices to show that Rp1,!((p
−1
2 FU )Zγ ) ' kγ ?F .

Write p̄1,2 = p1,2|Zγ . For any F ∈ Db(E), we have a canonical morphism

kγ ?F → kγ ? (Rp̄2,∗p̄
−1
2 F )→ kγ ? (Rp̄1,∗p̄

−1
2 F ),

where the last morphism is given by the restriction kγ ?Rp̄2,∗ → kγ ?Rp̄1,∗ from p̄−1
1 (U)→

p̄−1
2 (U) for any γ-invariant open subset U . We show that this gives an isomorphism. Note

that p̄1p̄
−1
2 (K) = K − γ, and p̄1 : p̄−1

2 (K) → K − γ has proper contractible fiber if K is a
closed ball. Thus by the noncharacteristic deformation lemma

HjRp̄1,∗p̄
−1
2 Fx ' lim−→

K:x∈K
Hj(K,Rp̄1,∗p̄

−1
2 F ) ' lim−→

K:x∈K
Hj(p̄−1

1 K, p̄−1
2 F )

' lim−→
K:x∈K

Hj(K − γ,F ) = Hj(kγ ?F )x.

This completes the proof. �

Proposition 3.13. (1). If f : M → N is a submersion, then

Rfd,!f
−1
π µhom(F ,G ) ' µhom(f !F , f−1G ⊗ ωN/M ) ' µhom(f−1F ⊗ ωN/M , f !G );

(2). If f : M → N is a closed embedding, then

Rfπ,!f
−1
d µhom(F ,G ) ' µhom(Rf∗F , Rf!G ) ' µhom(Rf!F , Rf∗G ).

Proposition 3.14 (Sato’s exact triangle). Let F ,G ∈ Db(M). Suppose F is cohomologi-
cally constructible. Then there is an exact triangle

D′F ⊗ G → RH om(F ,G )→ Rπ̇∗µhom(F ,G )
[1]−→ .

Proof. By Proposition 1.5 we know that RΓ∆RH om(p−1
1 F , p!

2G ) ' RH om(F ,G ). On
the other hand, since p2 : M ×M →M is a submersion

RH om(p−1
1 F , p!

2G )|∆ ⊗ ω∆|M×M 'RH om(p−1
1 F , p−1

2 G ⊗ ωM×M |M )|∆ ⊗ ω∆|M×M

'RH om(p−1
1 F , p−1

2 G )|∆.

When F is cohomologically constructible, we have RH om(p−1
1 F , p−1

2 G )|∆ ' (p−1
1 D′F ⊗

p−1
2 G )|∆ ' D′F ⊗ G . This completes the proof. �

The following theorem follows from the singular support estimate of microlocalizations.
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Theorem 3.15. Let F ,G ∈ Db(M). Then

SS(µhom(F ,G )) ⊂ C(SS(F ), SS(G )).

Finally, we are able to prove the involutivity theorem for singular supports. Here being
involutive just means being coisotropic via the standard symplectic structure on T ∗M .
Before stating the theorem, we first give a definition of being coisotropic for a possibly
singular subvariety.

Definition 3.6. Let S ⊂ T ∗M . S is coisotropic at p ∈ S if for any ν ∈ T ∗p (T ∗M) such
that the normal cone Cp(S, S) ⊂ ker ν ⊂ Tp(T ∗M), ν ∈ Cp(S).

Note that when S is smooth near p, then this condition is just saying for any ν such that
TpS ⊂ ker ν, ν ∈ TpS. This coincides with our usual definition of being coisotropic.

Theorem 3.16. Let F ∈ Db(M). Then SS(F ) is coisotropic.

Proof. Let S = SS(F ), p ∈ S and ν ∈ T ∗p (T ∗M) such that Cp(S, S) ⊂ ker ν. Suppose

ν /∈ Cp(S).

Then one can find a closed subset Z ⊂ T ∗M such that S ⊂ Z and 〈ν, λ〉 < 0 for any
λ ∈ N∗pZ\{0}. In fact by the assumption there is an open cone γ with vertex at p containing
ν such that γ ∩ S = ∅. We can let S = T ∗M\γ.

On the other hand, one should notice that since Cp(S, S) ⊂ ker ν, SS(µhom(F ,F )) ∩
T ∗p (T ∗M) ⊂ Cp(S, S) ⊂ ker ν. Hence

SS(µhom(F ,F )) ∩N∗pZ ⊂ {0}.

This tells us that

RΓZ(µhom(F ,F ))p ' 0.

However, since supp(µhom(F ,F )) ⊂ S, we have µhom(F ,F )p = RΓZ(µhom(F ,F ))p '
0, i.e. p /∈ SS(F ). A contradiction. �

3.4. Localization of Db(M). As we’ve said at the beginning, we define the localization of
Db(M) along Db

M∪T ∗M\Λ(M) to be Db(M ; Λ). This means under the natural functor

Db(M)→ Db(M ; Λ),

all sheaves whose singular supports are away from Λ is mapped to zero.
As we have mentioned before, it is a general phenomenon that taking localization is the

same as taking direct limit. In this case, we have

HomDb(M ;Λ)(F ,G ) = lim−→
F ′
∼−→F on Λ

HomDb(M)(F
′,G ) = lim−→

G
∼−→G ′ on Λ

HomDb(M)(F ,G ′).

Now we study its relation with the functor µhom. Recall that HomDb(M)(F ,G ) =

H0(T ∗M,µhom(F ,G )). We have a canonical morphism

HomDb(M ;Λ)(F ,G )→ H0(T ∗M,µhom(F ,G )).

Theorem 3.17. Let p ∈ T ∗M , F ,G ∈ Db(M). Then

HomDb(M ;p)(F ,G ) ' H0(µhom(F ,G ))p.
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Proof. Write p = (x, ξ) ∈ T ∗M . Consider a local Euclidean chart, by proposition 3.12 we
have

H0µhom(F ,G )(x,ξ) = lim−→
U :x∈U ; γ⊂({ξ}∨)◦∪{0}

H0(RΓ(U,RH om(kγ ?FU ,G )))

= lim−→
U :x∈U ; γ⊂({ξ}∨)◦∪{0}

Hom((kγ ?FU )U ,G ))).

The canonical morphism (kγ ?FU )U → F is an isomorphism at (x, ξ). Therefore the mor-
phismHomDb(M ;p)(F ,G )→ H0(µhom(F ,G ))p is injective. For any s ∈ H0(µhom(F ,G ))p,

there exists U and γ, s̄ ∈ Hom((kγ ? FU )U ,G ))) that represents s. This shows that the
sequence (kγ ?FU )U is a final sequence. Hence HomDb(M ;p)(F ,G ) → H0(µhom(F ,G ))p
is surjective. �

Here we study more carefully the localized category Db(M,p) and see if we can always
choose a representative in Db(M) with good properties. The following proposition can be
generalized to more general conical subsets by contact transformations later on.

Proposition 3.18. Let j : N →M be a closed embedding. Let p ∈ T ∗NM and F ∈ Db(M).

(1). If SS(F ) ⊂ π−1(N) in a neighbourhood of p, then there exists G ∈ Db(N) so that
F ' Rj∗G in Db(M,p);

(2). If SS(F ) ⊂ T ∗NM in a neighbourhood of p, then there exists L ∈ Db(Mod(k)) so

that F ' LN in Db(M,p);

Proof. (1). By induction on the dimension of N , we may assume that N is a hypersurface
defined by ϕ = 0. We have ϕ(x) = 0. Assume that dϕ(x) = ξ. Let U± = ϕ−1(R±) and
i± : U± →M . Then we know by Theorem 1.14 that

SS(Ri−,∗i
−1
− F ) ⊂ SS(i−1

− F )+̂N∗(Rn−).

Hence as SS(i−1
− F ) is disjoint from N , we know that (x, ξ) /∈ SS(Ri−,∗i

−1
− F ). By the

exact triangle

RΓU+
(F )→ F → Ri−,∗i

−1
− F

[1]−→,

RΓU+
(F )→ F is an isomorphism at p. Now we may assume that supp(F ) ⊂ U+. On the

other hand, we also know p /∈ SS(Ri+,∗i
−1
+ F ). Hence F → Rj∗j

−1F is an isomorphism

at p. We can let G = j−1F .
(2). We have SS(G ) ⊂ N in a neighbourhood of p. Hence G = j−1F ' LN at p by the

non-characteristic deformation lemma and the fact that

SS(j−1F ) = jdj
−1
π (SS(F )) ⊂ N ⊂ T ∗N,

since j : N →M has proper contractible fibers. �

4. Simple Sheaves

4.1. Contact Transformations. Let U, V are open subsets in T ∗M,T ∗N . Then for Λ ⊂
U × V op, if π1 : Λ → U and π2 : Λ → V are diffeomorphisms, and Λ is a Lagrangian
submanifold, then

χ = (πop
2 |Λ) ◦ (π1|Λ) : V → U

is called a contact transformation. In particular, note that a symplectomorphism U
∼−→ V

defines a contact transformation.
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Theorem 4.1. Let χ : U → V be a contact transformation. Then for any x ∈ X, y ∈ Y ,
there exists neighbourhoods M ′, N ′ of π(x), π(y), neighbourhoods U ′, V ′ of x, y satisfying

U ′ ⊂ T ∗M ′ ∩ U, V ′ ⊂ T ∗N ∩ V,
so that χ : U ′ → V ′ is also a contact transformation, there exists Φ : Db(M ′;U ′)

∼−→
Db(N ′;V ′), and

χ∗µhom(F ,G ) ' µhom(Φ(F ),Φ(G )).

4.2. Pure and Simple Sheaves. When analyzing the microlocal behaviour of the sheaf
category, the simplest objects we would like to work with is those who are microlocally
supported in a single degree, so that we will be under the classical setting instead of the
original derived setting. Roughly speaking those are what we call pure sheaves. If in
addition, the sheaf has rank one, then it is called a simple sheaf.

Our goal is to make it clear what it means by microlocally supported in a single degree
or microlocally rank one.

Definition 4.1. Let Λ ⊂ T ∗M\M be a conical subset. Db
(Λ)(M) is the full subcategory

of Db(M) in which for any F there is a neighbourhood U of Λ in T ∗M\M such that
(SS(F )\M) ∩ U ⊂ Λ.

The reason we want to consider this category is basically because of proposition 3.18.
Basically after localization the sheaves in Db

(Λ)(M) behave well and have good representa-

tives.
Let Λ ⊂ T ∗M be a conical Lagrangian, ϕ : M → R a smooth function. We say ϕ is

transverse to Λ if Λ t Λϕ = {(x, dϕ(x))|x ∈M}. Let τϕ be the Maslov potential.

Proposition 4.2. Let Λ = T ∗NM be a conical Lagrangian, ϕ0,1 be transverse to Λ at

p = (x, ξ) and F ∈ Db
(Λ)(M). Then

(RΓϕ1≥0F )x ' (RΓϕ0≥0F )x[(τϕ0(p)− τϕ1(p))/2].

Proof. Without loss of generality, we assume that in a local chart N is defined by x1 = ... =
xk = 0. The tangent space of Λϕ is

TpΛϕ =
{

(x, ξ)
∣∣∣ξj =

n∑
i=1

∂i∂jϕ(x)xi

}
.

Since TpΛϕ is transverse to TpΛ = {(x, ξ)|x1 = ... = xk = ξk+1 = ... = ξn = 0}, we know
(∂i∂jϕ(x))k+1≤i,j≤n is non-degenerate. By Morse lemma, one may assume that

ϕ|N =

n∑
j=k+1

ajx
2
j , ak+1, ..., ak+l < 0, ak+l+1, ..., an > 0.

The corresponding Maslov potential at p is τϕ(p) = −sgn(D2ϕ|N ) = 2l + k − n. Therefore
we have

(RΓϕ≥0F )x[τϕ(p)/2] ' (RΓϕLN )0[l + (k − n)/2] = L[(k − n)/2]

which is independent of the choice of ϕ. �

Proposition 4.3. Let p0 ∈ T ∗M0, p1 ∈ T ∗M1, and χ : U0
∼−→ U1 is a contact trans-

formation between neighbourhoods of p0 and p1. Suppose ϕ0, ϕ1 are smooth functions so
that p0 ∈ Λϕ0 , p1 ∈ Λϕ1, and χ(T ∗

ϕ−1
0 (0)

M0) = T ∗
ϕ−1

1 (0)
M1. Then for any Lagrangian plane

l ⊂ Tp(T ∗M),

RΓϕ0≥0(F )x0 ' RΓϕ1≥0(χ∗F )x1 [(τϕ1(l)− τϕ0(l))/2 + (n− 1)/2

+ τ(Tp0T
∗
x0
M0, l, χ

−1(Tp1T
∗
x1
M1))/2].
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Definition 4.2. Let Λ ⊂ T ∗M be a conical Lagrangian. F ∈ Db
(Λ)(M) is called a pure

sheaf if for some p = (x, ξ) ∈ Λ, (RΓϕ1≥0F )x is concentrated in a single degree. It is called
a simple sheaf if (RΓϕ1≥0F )x is rank one.

The following proposition explains what is the relationship between pure/simple sheaves
and microlocalization. It tells us that the condition in the definition is indeed a microlocal
condition. The propositions can be applied to general conical Lagrangians using contact
transformations.

Proposition 4.4. Let N ⊂ M be a submanifold, Λ = T ∗NM and F ,G ∈ Db
(Λ)(M). For

p = (x, ξ) ∈ Λ, ϕ : M → R such that ϕ(x) = 0, dϕ(x) = ξ,

µhom(F ,G )p = RHom(RΓϕ≥0(F )x, RΓϕ≥0(G )x).

Proof. By proposition 3.18, one only needs to consider the case when F ' KN ,G ' LN at
p. Then on the left hand side

µhom(F ,G )p = µhom(KN , LN )p = RHom(K,L).

On the right hand side, if k = dimN , then

RHom(RΓϕ≥0(F )p, RΓϕ≥0(G )p) = RHom(K,L).

Therefore we are done. �

Proposition 4.5. Let Λ = T ∗NM . F ∈ Db
(Λ)(M) is pure iff µhom(F ,F )|Λ is concentrated

in degree zero; it is simple iff µhom(F ,F )|Λ ' kΛ.

Proof. Again pick K,L ∈ Db(Mod(k)) so that KN ' F , LN ' G at p ∈ Λ. Then
µhom(F ,G )p = RHom(K,L) and the previous proposition tells us that it does not de-
pend on p. Then the result follows from linear algebra. �

4.3. Derived Category µshΛ. The functor Λ 7→ Db(M,Λ) defines a presheaf of categories
whose stalk is Db(M,p) (where morphisms are given by the stalk of µhom). Now we
illustrate why simple sheaves play an important role in microlocal sheaf theory. Basically
the reason is that a simple sheaf gives a framing that identifies the sheafification of categories
with derived local systems.

Definition 4.3. Let Λ ⊂ T ∗M be a conical subset. The presheaf of categories (prestack)
µsh0

Λ is

Λ0 7→ Db(M,Λ0), Λ0 ⊂ Λ.

The sheafification is µshΛ.

Theorem 4.6. Let Λ ⊂ T ∗M be a closed conical Lagrangian. Suppose F ∈ Db
(Λ)(M) is a

simple sheaf. Then there is an equivalence of categories

µshΛ(Λ)→ DbLoc(Λ); G 7→ µhom(F ,G )|Λ.

By discussions in the previous subsection, it suffices to show the following:

Proposition 4.7. Let Λ ⊂ T ∗M be a closed conical Lagrangian and p = (x, ξ) ∈ Λ. Then
there exists a neighbourhood Λ0 ⊂ Λ of p such that

(1). there exists F ∈ Db
(Λ0)(M) that is simple along Λ0;

(2). for any G ∈ Db
(Λ0)(M) there exists a neighbourhood U of Λ0 such that F⊗LLM

∼−→ G

in Db(M,U), where L = µhom(F ,G )p.
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Proof. Without loss of generality, we may assume that Λ = T ∗,+N M where N ⊂ M is a
hypersurface. In a local coordinate chart, Λ = {(x, ξ) ∈ T ∗Rn|x1 = 0, ξ1 > 0, ξ2 = ... =
ξn = 0}, N = 0× Rn−1. Then we can define the simple sheaf

F = k[0,+∞)×Rn−1 .

For any G ∈ Db
(Λ)(M), there exists K ∈ Db(Mod(k)) such that G(−1,0,...,0) = K. We have a

long exact sequence

G(1,0,...,0) → G(−1,0,...,0) → RΓ[0,+∞)×Rn−1(G )(0,0,...,0)
[1]−→ .

Therefore if L = RΓ[0,+∞)×Rn−1(G )(0,0,...,0) then in Db(M,Λ) since KRn ' 0 we have

G ' Cone(L[0,+∞)×Rn−1 [−1]→ KRn) ' L[0,+∞)×Rn−1 .

This completes the proof of the proposition. �

5. Quantization of Hamiltonian Isotopies

We’ve already seen that singular supports of sheaves are coisotropic subsets, which nat-
urally arise as objects in symplectic geometry. In this section we show that indeed the
category of sheaves with given singular support Db

Λ(M) is an invariant of Λ, in other words
they are invariant under Hamiltonian isotopy.

Here since we don’t care about the zero section, we use the following conventions through-
out the section: Ṫ ∗M = T ∗M\M , ˙SS(F ) = SS(F )\M , Db

Λ(M) = Db
Λ∪M (M) and

Db(M ; Λ) = Db(M)/Db
(T ∗M\Λ)∪M (M). Now we introduce the main theorem in this sec-

tion.

Theorem 5.1 (Guillermou-Kashiwara-Schapira). Let ϕt (t ∈ I) be a homogeneous Hamil-

tonian isotopy of Ṫ ∗M such that ϕ0 = id, and Λt (t ∈ I) be the graph of ϕt (t ∈ I) in

Ṫ ∗(M×M×I). Then up to isomorphism, there exists a unique sheaf K ∈ Dlb(M×M×I)
such that

(1). ˙SS(K ) ⊂ Λ;
(2). K |t=0 = k∆;
Let K−t = (a× idI)

−1RH om(K , ωM � kM � kI) (where a(x, y) = (y, x)) and K ◦L =
Rπ13,∗(π

−1
12 K ⊗ π−1

23 L ). Then K in addition satisfies
(3). π1,2 : supp(K )→M × I are proper;
(4). Kt ◦K−t ' K−t ◦Kt ' k∆;
(5). If ϕt|U ≡ idU , then K |(U×M∪M×U)×I = k(∆∩(U×M∪M×U))×I .

Note that in particular (4) implies that

Kt : Dlb(M)→ Dlb(M)

is an equivalence of categories.

5.1. Uniqueness. We first show uniqueness of K . Let’s write

B = {(x, y, t)|({(x, y)} × [0, t]) ∩ π̇(Λ) 6= ∅}.
We will show that for a sheaf K satisfying (1) and (2), it will satisfy (3)-(5) and is unique.

Proof of Uniqueness. First we prove (3). In fact we show that supp(K ) ⊂ B. Otherwise
suppose for (x, y, t) /∈ B, there is a neighbourhood (U×V ×J)∩π(Λ) = ∅. Then K |U×V×J
is constant. Note that by definition of B, 0 ∈ J . Since K |t=0 = k∆, (x, y) /∈ ∆. This shows
that K |U×V×J = 0. Now the claim follows from the fact that π1,2 : B →M × I are proper.

Next we prove (4). It suffices to show that

K ◦I K −1 = Rπ13,∗(π
−1
12 Kt ⊗ π−1

23 K−t) ' k∆×I .
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We estimate the singular support of K ◦I K −1. In fact, ˙SS(K ) ⊂ Λ, so ˙SS(K −1) ⊂ a(Λ)
where a(x, ξ, y, η, t, τ) = (y,−η, x,−ξ, t,−τ). This tells us that

˙SS(K ◦I K −1) ⊂ Ṫ ∗(M ×M)× I.

Hence K ◦I K −1 is constant along I, which means (K ◦I K −1|t) ≡ k∆.
Then we show (5). This is because Λ∩(U×M ∪M×U)×I = (∆∩(U×M ∪M×U))×I,

which tells us that
˙SS(F ) ⊂ T ∗(U ×M ∪M × U)× I,

which is to say K |(U×M∪M×U)×{t} ≡ k∆.
Finally we show uniqueness up to isomorphisms. Suppose one can find K0,K1 satisfying

(1) and (2), then there is a unique isomorphism

ψ : K0 → K1

so that i−1
0 ψ : k∆ → k∆ is the identity. Let L = K0 ◦I K −1

1 . By the same argument as we

prove (4) we know that ˙SS(F ) ⊂ Ṫ ∗(M ×M)× I, so L ' k∆×I .

K0 ' L ◦I K1 ' K1.

This completes the proof. �

5.2. Existence. In this section we show that there exists a sheaf K ∈ Dlb(M ×M × I)
that satisfies (1) and (2). This will prove our theorem.

The issue is that essentially the only sheaf quantization we are only able to construct is
the constant sheaf on a submanifold N ⊂ M . When Λ = T ∗NM is a conormal bundle of a
submanifold, we may define K = kN . Unfortunately this is not always the case. However
this is also not that complicated, since we know the front projection of a conical Lagrangian
(or a Legendrian) is generically a hypersurface. Suppose the hypersurface is separating M
as U+ ∪ U−. Then one may be able to work with the sheaf kU− .

The question is how do we deform. The following lemma gives a way, which is essen-
tially to deform by the geodesic flow. Intuitively, when you run the geodesic flow, any
point (corresponding to a cotangent fiber in the cotangent bundle) will expand to a circle
(corresponding to its inward conormal).

Lemma 5.2. Let Ω be a neighbourhood of ∆ ⊂M ×M , f ∈ C∞(M) be such that
(a). f |∆ ≡ 0;
(b). f(x, y) > 0 for (x, y) ∈ Ω\∆;
(c). DiDjf(x, x) is positive definite for (x, x) ∈ ∆.
Then for a relatively compact subset U ⊂M , there exists ε0 > 0 and Ω0 ⊂M ×M such

that
(1). ∆ ⊂ Ω0 ⊂ Ω ∩ (M × U);
(2). For Zε0 = {(x, y) ∈ Ω0|f(x, y) ≤ ε0}, π2 : Zε0 → U is proper;
(3). For y ∈ U, ε ∈ [0, ε0], {x ∈M |(x, y) ∈ Ω0, f(x, y) < ε} ' Rn;
(4). Dxf(x, y) 6= 0, Dyf(x, y) 6= 0 for x, y ∈ Ω0\∆;

(5). Let T ∗∂Zε0 ,−
Ω0 be the inward conormal bundle, π2 : T ∗∂Zε0 ,−

Ω0
∼−→ Ṫ ∗U and π1 :

T ∗∂Zε0 ,−
Ω0

∼−→ Ṫ ∗M is an open embedding.

Let L = kZε0 ∈ D
lb(M × U). Then ˙SS(L ) ⊂ T ∗∂Zε0 ,−Ω0 and L −1 ◦L ' k∆U

.

Proof. Condition (1)-(5) are easy to be satisfied. It suffices to check the last assertions.
˙SS(L ) ⊂ T ∗∂Zε0 ,−Ω0 is essentially by definition. In addition,

˙SS(L −1 ◦L ) ⊂ Ṫ ∗∆U
(U × U).
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Note that because L is simple, there is a canonical morphism L −1 ◦L → k∆U
which is

an isomorphism along Ṫ ∗∆U
(U × U). Thus Cone(L −1 ◦ L → k∆U

) is a local system. In

addition, (write Z = Zε0)

δ−1(L −1 ◦L ) ' Rπ2,!(L ⊗RH om(L , kM×U )⊗ π!
2kU )

' Rπ2,!(kZ ⊗ kZ◦ ⊗ π!
2kU ) ' kU

since the fiber of π2 : Z◦ → U is Rn. Hence δ−1(L −1 ◦ L ) = k∆U
, which means

δ−1Cone(L −1 ◦ L → k∆U
) = 0. Since it is locally constant, we can conclude that it

is 0. �

Now we try to illustrate why in the case when the front projection of Λ is a hypersurface,
it is easier to extend the sheaf by the Hamiltonian isotopy. In fact we are just extending
Z ⊂M ×M to Z̃ ⊂M ×M × (−ε, ε).

Lemma 5.3. Let Z ⊂M×M be an open subset with smooth boundary. Λ ⊂ Ṫ ∗(M×M×I)
be a closed conical Lagrangian and Λt = Λ ◦ T ∗t I. We assume that

(1). Λ|t=0 = ˙SS(kZ);

(2). Λ ∩ Ṫ ∗(((M ×M)\K)× I) = (Λ0\K)× I;

(3). Λ→ Ṫ ∗(M ×M)× I is a closed embedding.

Then there exists ε > 0 and an closed subset Z̃ ⊂M ×M × (−ε, ε) such that

(1). Z̃ ∩ (M ×M × {0}) = Z;

(2). Λ = ˙SS(kZ̃).

Proof of existence. Assume that ϕt (t ∈ I) is compactly supported on N . Choose a relative
compact open subset N ⊂ U ⊂M , and apply Proposition 5.2. Then L = kZε0 ∈ D

b(M ×
U), ˙SS(L ) ⊂ T ∗∂Zε0 ,−(M × U) and L −1 ◦L = k∆U

. Write

Λ̃ = T ∗∂Zε0 ,−
(M × U) ◦ Λ.

Now we apply Lemma 5.3 to L = kZε0 , and deduce that there exists Z̃ ⊂M ×U × (−ε, ε),
L̃ = kZ̃ such that

(1). L̃ |t=0 = L ;

(2). ˙SS(L̃) ⊂ (Λ̃×I (−ε, ε));
(3). π2 : M × U × (−ε, ε)→ U × (−ε, ε) is proper on supp(L̃ ).
We define the sheaf quantization

K = L −1 ◦I L̃ ∈ Db(U × U × (−ε, ε)).

Then by the proof in the uniqueness part, K |((U×U)\(N×N))×(−ε,ε) = k∆U\N×(−ε,ε), so it can

be extended to K ∈ Dlb(M ×M × (−ε, ε)).
Now we can glue the sheaves on M ×M × (ti, ti+1) as when we solve ordinary differential

equations. Suppose J is the maximal interval where K can be defined, then since it has to
be both open and closed, we are done.

In general, if ϕt (t ∈ I) is not compactly supported, we just using an exhausting se-
quence of compact subsets {Nn}n≥0 of M and cut-off the Hamiltonian isotopy outside Nn.
Inductively this defines a sheaf quantization globally. �

5.3. Topological Applications. First of all we conclude that the sheaf category with
given singular support in indeed a Legendrian invariant.



28 WENYUAN LI

Corollary 5.4. Let ϕt (t ∈ I) be a homogeneous Hamiltonian isotopy of Ṫ ∗M such that

ϕ0 = id, and Λt (t ∈ I) be the graph of ϕt (t ∈ I) in Ṫ ∗(M ×M × I). Suppose S0 ⊂ Ṫ ∗M
is a conical Lagrangian, S = Λ ◦I S0 and St = Λt ◦ S0. Then

i−1
t : Dlb

S (M × I)→ Dlb
St(M)

is an equivalence.

Next we summarize some results on non-displaceability problems in the cotangent bundle.
We start with the homogeneous case.

Proposition 5.5. Let ϕt (t ∈ I) be a Hamiltonian isotopy on T ∗M , f ∈ C∞(M) be such
that df(x) 6= 0, and F0 ∈ Db(M) be with compact support. Assume that RΓ(M,F0) 6= 0.

Then ϕt( ˙SS(F0)) ∩ Λf 6= ∅. Let S0 = ˙SS(F0) ⊂ T ∗M be a conical Lagrangian. Assume
F0 is simple, Λf t ϕt(S0) and the intersection is finite. Then

|ϕt(S0) ∩ Λf | ≥
∑
j∈Z

dimHj(M,F0).

Proof. Let F = ΦK (F0) and Ft = ΦKt(F0). Then ˙SS(Ft) ⊂ ϕt( ˙SS(F0)). The first
result follows from the microlocal Morse lemma.

Note that when f is simple, at (x0, ξ0) ∈ ϕt(St) ∩ Λf ,∑
j∈Z

dimHj(RΓf(x)≥f(x0)(Ft)x0) = 1.

Let ϕt(S0) ∩ Λf = {(xi, ξi)|i ∈ I}. This tells us that

|ϕt(S0) ∩ Λf | =
∑
i∈I

∑
j∈Z

dimHj(RΓf(x)≥f(xi)(Ft)xi).

Now the proposition follows from the microlocal Morse inequality. �

In order to discuss non-homogeneous problems, we lift T ∗M to T ∗(M × R) and modify
the non-homogeneous problem to a homogeneous problem.

Theorem 5.6 (Floer). Let ϕt (t ∈ I) be a (not necessarily homogeneous) Hamiltonian
isotopy on T ∗M and there exists K ⊂ T ∗M such that ϕt|T ∗M\K ≡ id. Then ϕt(M)∩M 6= ∅,
and when ϕt(M) tM ,

|ϕt(M) ∩M | ≥
n∑
i=0

dimH i(M ; kM ).

Proof. Lift ϕt (t ∈ I) to a homogeneous Hamiltonian isotopy on T ∗(M ×R). If ϕt is defined
by Ht, then write

ρ : T ∗M × Ṫ ∗R→ T ∗M ; (x, ξ, s, σ) 7→ (x, ξ/σ)

and let dH̃t = σρ∗dHt + (Ht ◦ ρ)dσ.
Let f = s, F0 = kM ∈ Db(M × R) and apply the previous proposition, we get the

estimate for ϕ̃t(Ṫ
∗
M (M × R)) ∩ Λf . Now let Σt = {(σϕt(x, 0), σ)|x ∈ M,σ ∈ R×}. We first

of all have

Σt ∩ (M × {1}) = ϕt(M) ∩M.

Next note that ϕ̃t(Ṫ
∗
M (M×R))

∼−→ Σt under the map p : T ∗M×Ṫ ∗R→ T ∗M×R×; (x, ξ, s, σ)
7→ (x, ξ, σ) because

ϕ̃t(Ṫ
∗
M (M × R)) = {(σϕt(x, 0), u(x, 0, t), σ)|x ∈M,σ ∈ R×}
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where u is the function such that

ϕ̃t(x, ξ, s, σ) = (x′, ξ′, s+ u(x, ξ/σ, t), σ), ϕt(x, ξ/σ) = (x′, ξ′/σ).

On the other hand we know that p : Λf
∼−→M × {1}. Therefore

ϕ̃t(Ṫ
∗
M (M × R)) ∩ Λf ' Σt ∩ (M × {1}),

which finishes the proof of the theorem. �

6. Quantization of Lagrangian Submanifolds

We can use microlocal sheaf theory to study the geometry of Lagrangian submanifolds.
However, sheaf theory can only detect conical Lagrangians in cotangent bundles, or equiv-
alently, Legendrians in unit cotangent bundles. Therefore we lift a Lagrangian L ⊂ T ∗M
to a Legendrian in T ∗,∞τ≥0 (M × R). For such a lifting to exist, we require that L is exact,

i.e. λstd|L = dfL.

Definition 6.1. Let L ⊂ T ∗M be an exact Lagrangian such that λstd|L = dfL. Then the
Legendrian lift of L is

L̂ = {(x, ξ; t,+∞)|(x, ξ) ∈ L, t = fL(x, ξ)} ⊂ T ∗,∞τ≥0 (M × R).

The conification of L is

C(L) = {(x, ξ; t, τ)|τ ∈ (0,+∞), (x, ξ/τ) ∈ L, t = fL(x, ξ/τ)} ⊂ T ∗τ≥0(M × R).

Here since we don’t care about the zero section, we use the following conventions through-
out the section: Ṫ ∗M = T ∗M\M , ˙SS(F ) = SS(F )\M , Db

Λ(M) = Db
Λ∪M (M) and

Db(M ; Λ) = Db(M)/Db
(T ∗M\Λ)∪M (M). Now we introduce the main theorem in this sec-

tion.

Theorem 6.1 (Guillermou). Let Λ ⊂ T ∗(M ×R) be a conification of a compact embedded
exact Lagrangian submanifold L ⊂ T ∗M . Then there exists a sheaf F ∈ Db

Λ(M × R) such

that ˙SS(F ) = Λ.

Throughout this section, we will also assume that all categories are homotopy categories
with dg enhancements (instead of simply triangulated categories) and all sheaves of cate-
gories are defined in the dg sense. This is because the presheaf of sheaves (when working
with triangulated categories)

shpre
Λ : U 7→ Db

Λ∩T ∗U (U)

is not a sheaf, but (when working with homotopy categories with dg enhancements)

shpre
Λ : U 7→ Db

Λ∩T ∗U (U)

is itself a sheaf, and this will bring much convenience to us when gluing sheaves on small
open subsets.

6.1. Local Construction. Given a Lagrangian submanifold Λ ⊂ Ṫ ∗M , without loss of
generality we consider a simple case where the front projection π|Λ : Λ/R+ →M has finite
fibers.

Lemma 6.2. Let Λ ⊂ Ṫ ∗M be a conical Lagrangian so that the front projection π|Λ :

Λ/R+ →M has finite fibers. Let p = (x, ξ) ∈ Ṫ ∗M . Then there is a neighbourhood U ⊂M
of x and F ∈ Db(U) so that ˙SS(F ) ⊂ Λ ∩ Ṫ ∗U and F is simple along Λ ∩ Ṫ ∗U .
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Figure 6. The closed cone γ∨ and the closed subset Z in M = Rn.

The idea is very simple. By Proposition 4.7 one knows that there exists a sheaf F0 ∈
Db(M) simple at p ∈ T ∗M . However that only creates a neighbourhood V around p where
F0 is simple. In the lemma we instead want a neighbourhood around T ∗xM where F is
simple. Hence the main difficulty is to cut off the simple sheaf so that at the fiber T ∗xM it
has no singular support away from T ∗xM ∩ V .

Proof. Without loss of genrality, we may assume that Λ∩T ∗xM = R+ξ. By Proposition 4.7
there is a neighbourhood V ⊂ T ∗M of p, F ∈ Db(M) such that

SS(F0) ∩ V ⊂ Λ ∩ V
and F0 is simple along Λ at p. We may assume that T ∗xM ∩ V ∩ Λ = R+ξ. Now pick an
open convex cone γ ⊂ T ∗xM such that ξ ∈ γ and γ̄ ⊂ T ∗xM ∩ V. Then we claim that there
exists an exact triangle

F
u−→ F0 → G

[1]−→,
so that SS(G ) ∩ γ = ∅ and Ṫ ∗xM ∩ SS(F ) ⊂ γ.

Under the assumption of the claim, consider a conical neighbourhood Vγ of γ in V ⊂
T ∗M . Now Λ\Vγ is disjoint from p, by the assumption that Λ ∩ T ∗xM = R+ξ, we know
there is a neighbourhood U ⊂M of x so that Λ ∩ T ∗U ⊂ Vγ . Then

p /∈ ( ˙SS(F ) ∩ Ṫ ∗U)\Vγ = ( ˙SS(F ) ∩ Ṫ ∗U)\Λ.

We can now define U ′ = M\π̇(( ˙SS(F ) ∩ Ṫ ∗U)\Λ).
Finally it suffices to check the claim. Choose a local chart U and assume M = Rn.

Without loss of generality we assume γ∨ ⊂ {x|x1 < 0} ⊂ M . Now we pick a closed subset
Z ⊂M so that (see Figure 6)

(1). 0 ∈ Z◦; (2). Z ⊂ {x|x1 ≥ −ε}; (3). −N∗xZ = N∗x(γ∨).

Let s : M ×M →M, (x, y) 7→ x− y. We now define

F = kγ∨ ? RΓZ(F0) = Rπ2,∗(s
−1kγ∨ ⊗ π−1

1 RΓZ(F0)).

Let u : F → F0 be the composition

F
∼−→ kγ∨ ? RΓZ(F0)→ k0 ? RΓZ(F0)

∼−→ RΓZ(F0)→ F0.

Using the microlocal cutoff lemma 1.9, u is an isomorphism on Z◦ × γ◦. At the same time,

SS(F ) ⊂M × γ, T ∗0M ∩ SS(F ) ⊂ γ.
Hence it suffices to check that u is also an isomorphism on ∂γ ⊂ T ∗0M .
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Let Γ = {ξ ∈ γ\{0}|∃x ∈ U, (x, ξ) ∈ SS(F0)}. By refining U we may assume that Γ ⊂ γ.
Now it suffices to show that

ξ ∈ Γ, ∀ (0, ξ) ∈ SS(F ), ξ ∈ ∂γ\{0}.

This will tell us that ξ ∈ γ. By the tensor product formula (since π2 : s−1(γ)∩π−1
1 (Z)→M

is proper), if (0, ξ) ∈ SS(F ), then there exists

(x, ξ) ∈ (−SS(kγ∨)) ∩ SS(RΓZ(F )).

Now x ∈ U , so it suffices to check for any (x, ξ) ∈ (−SS(kγ)) ∩ SS(RΓZ(F0)),

(x, ξ) ∈ SS(F0).

Since (x, ξ) ∈ (−SS(kγ∨)) ∩ SS(RΓZ(F )), x ∈ ∂γ. If x ∈ Z◦, F0 ' RΓZ(F0), so (x, ξ) ∈
SS(F ). If x ∈ ∂Z, N∗xZ = N∗xγ

op = R≥0ξ. Suppose (x, ξ) /∈ SS(F0). Then

ξ ∈ T ∗xM ∩ SS(RΓZ(F0)) ⊂ (−R≥0ξ) + (T ∗xM ∩ SS(F0)).

This implies (x, ξ) ∈ SS(F0), which is a contradiction. This completes the proof. �

6.2. The Structure of µshΛ. Given Λ ⊂ Ṫ ∗M a conical Lagrangian submanifold, we can
associate the sheaf of categories µshΛ whose stalks are Mod(k). The sheaf of categories is
determined by (up to homotopy) the classifying map

Λ→ BAutk(Mod(k))
∼−→ BPic(k).

We would like to find out the obstruction of existence of global sections in µshΛ. The
following theorem won’t be proved.

Theorem 6.3 (Jin-Treumann; Jin). Let k be an E2-spectrum and Λ ⊂ Ṫ ∗M be a conical
Lagrangian submanifold. Then the classifying map Λ→ BPic(k) factors as

Λ
G−→ U/O

BJ−−→ BPic(S)→ BPic(k),

where G : Λ→ U/O is the stable Gaussian map and BJ : U/O → BPic(S) is the delooping
of the J-homomorphism.

The obstruction classes are the Maslov class and the relative second Stiefel-Whitney
class when k is an ordinary ring. We know that U/O ' B(Z×BO). Since k is discrete, the
J-homomorphism factors as

J : Z×BO → Z×B(Z/2Z)→ Pic(k).

Now the map L → B(Z × B(Z/2Z)) exactly defines the Maslov class and relative second
Stiefel-Whitney class.

From now on we assume that k is a ring and show that in this setting the Maslov class
and the relative second Stiefel-Whitney class are the obstructions.

6.2.1. The Maslov Class and Maslov Sheaf. Given Λ ⊂ Ṫ ∗M a conical Lagrangian subman-
ifold, let’s consider the sheaf of categories µshΛ. In order to prove the existence of a global
object in Db

Λ(M), first we try to consider a global object in µshΛ(Λ). However there is an
obstruction of the Maslov class.

Let

σM : LGr(T ∗M)→ T ∗M

be the Lagrangian Grassmannian of T ∗M and

σ0
M : LGr0(T ∗M)→ T ∗M

be the subbundle consisting of Lagrangian planes transverse to the Maslov cycle Tp(T
∗
xM).
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Definition 6.2. Let Λ ⊂ Ṫ ∗M be a conical Lagrangian submanifold. Let

σΛ : UΛ → Λ

be the subbundle of LGr0(T ∗M)|Λ consisting of Lagrangian planes transverse to Λ. Let

IΛ = {(l, π ◦ σΛ(l))|l ∈ UΛ} ⊂ UΛ ×M,

JΛ = {(l, x; 0, λξ)|(x, ξ) = σΛ(l)} ⊂ T ∗(UΛ ×M).

A C∞ function ϕ on UΛ ×M is admissible if for any (x, ξ) = σΛ(l),

ϕl(x) = 0, dϕl(x) = ξ, (dϕl)x(TxM) = l.

One can show that admissible functions exist. Since this is a purely differential topology
exercise, we omit the proof here. For any sheaf F , whenever we want to consider the
microlocal behaviour at (x, ξ), we always consider a function ϕ so that ϕ(x) = 0, dϕ(x) = ξ
and take the local cohomology

RΓϕ−1([0,+∞))(F )x.

Here we’re just parametrizing such functions by Lagrangian subspaces so that everything
can work out in the Lagrangian Grassmannian.

The following theorem is the preparation for constructing a map from F ∈ Db
(Λ)(M) to

a local system, which will be given by

F 7→ Rπ1,∗Nϕ,F = Rπ1,∗(RΓϕ−1([0,+∞))(π
−1
2 F )IΛ).

(3) is saying that this is indeed a local system and (4) is saying that this local cohomology
is indeed a parametrized version of the usual local cohomology we use.

Theorem 6.4. Let ϕ be an admissible function and F ∈ Db
(Λ)(M). Let π1 : UΛ ×M →

UΛ, π2 : UΛ ×M →M be the projections. Then for

Mϕ,F = µhom(kϕ−1([0,+∞)), π
−1
2 F ) ∈ Db(T ∗(UΛ ×M)),

Nϕ,F = RΓϕ−1([0,+∞))(π
−1
2 F )IΛ ∈ D

b(UΛ ×M),

there exists a neighbourhood V of IΛ such that
(1). Ṫ ∗V ∩ supp(Mϕ,F ) ⊂ JΛ and SS(Mϕ,F |Ṫ ∗V ) ⊂ T ∗JΛ

T ∗(UΛ ×M);

(2). Rπ̇∗(Mϕ,F |Ṫ ∗V ) ' Nϕ,F ;

(3). ˙SS(Rπ1,∗Nϕ,F ) = ∅;
(4). (Rπ1,∗Nϕ,F )l ' RΓϕ−1

l ([0,+∞))(F )τM (l), ∀ l ∈ UΛ.

Proof. (1). Note that there exists a neighbourhood V of IΛ ⊂ UΛ ×M such that
(i). SS∞(kϕ−1([0,+∞))) ∩ T ∗,∞V = Λ∞ϕ is a submanifold;
(ii). (UΛ × Λ) ∩ R+Λϕ = JΛ and they intersect cleanly.
Then condition (1) will be satisfied. Indeed, as long as such a neighbourhood is con-

structed, we can use the estimate SS(µhom(kϕ−1([0,+∞)), π
−1
2 F )) ⊂ C(SS(kϕ−1([0,+∞))),

SS(π−1
2 F )) ⊂ C(R+Λϕ, UΛ × Λ).

(2). By Sato’s exact triangle 3.14 we can obtain that

k∨ϕ−1([0,+∞)) ⊗ π
−1
2 F ⊗ kIΛ → Nϕ,F → Rπ̇∗(Mϕ,F )IΛ

[1]−→ .

We know that ϕ−1([0,+∞)) is a smooth hypersurface, so k∨ϕ−1([0,+∞)) = kϕ−1((0,+∞)). How-

ever since IΛ ⊂ ϕ−1(0), the first term in the exact triangle is zero.
(3). By part (1) Mϕ,F is locally constant along JΛ. Since JΛ → IΛ has contractible fibers,

by part (2) we obtain the result. Note that the projection π2 : IΛ → UΛ is a diffeomorphism.
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(4). We prove that il : {l}×M → UΛ×M is non-characteristic for RΓϕ−1([0,+∞))(π
−1
2 F )

in a neighbourhood of x. By part (2) we estimate Rπ̇∗(µhom(kϕ−1([0,+∞)), π
−1
2 F )). Indeed

we have

πππ
−1
d (C(UΛ × Λ,R+Λϕ)) ⊂ πππ−1

d (T ∗JΛ
(T ∗(UΛ × Λ))) = T ∗IΛ(UΛ × Λ).

Thus we can now conclude noncharacteristicity.
Non-characteristicity implies that we have

i−1
l Nϕ,F ' i!lNϕ,F ⊗ ω−1

l/UΛ
= i!lRΓϕ−1([0,+∞))(π

−1
2 F )⊗ ω−1

l/UΛ
' RΓϕ−1

l ([0,+∞))(F )x.

This completes the proof. �

Definition 6.3. Let ϕ be an admissible function and π1 : UΛ×M → UΛ, π2 : UΛ×M →M
be the projections. Then

mΛ : Db
(Λ)(M) → DbLoc(UΛ) ;

F 7→ Rπ1,∗(RΓϕ−1([0,+∞))(π
−1
2 F )IΛ) .

For l ∈ UΛ, the microlocal germ of F at l is mΛ,l(F ) = (mΛ(F ))l.

Proposition 6.5. Let Λ ⊂ Ṫ ∗M be a locally closed conical Lagrangian. Then

mΛ0 : Db
(Λ0)(M) → DbLoc(UΛ0)

for all Λ0 ⊂ Λ open subsets induces a functor of stacks

mΛ : µshΛ → σΛ,∗(D
bLocUΛ

).

In particular, for any F ,G ∈ Db
(Λ)(M), there is a canonical isomorphism

σ−1
Λ H0µhom(F ,G )

∼−→ H0RH om(mΛ(F ),mΛ(G )).

Proof. Let Λ0 ⊂ Λ, and F ∈ Db
(Λ0)(M) such that SS(F ) ∩ Λ0 = ∅. Then mΛ0(F ) =

0. Hence the map mΛ0 factors through Db(M ; Λ0). Therefore there is a natural functor
between prestacks and after sheafification this gives the functor mΛ. This is an isomorphism
because of proposition 4.4. �

Although the previous proposition tells us that the functor mΛ is fully faithful, it is not
actually an equivalence. In fact we have to keep track of the module structure over the
diagnol, which will be characterized by the Maslov sheaf. First recall that

DF = RH om(F , ωM ), D′F = RH om(F , kM ).

Proposition 6.6. There exists a neighbourhood V of ∆Λ in Λ× (−Λ) and a simple object
K∆Λ

∈ µshV (V ) so that for any Λ0 ⊂ Λ, F ∈ Db
(Λ0)(M), there is a canonical morphism

K∆Λ
→ (π−1

1 F ⊗ π−1
2 DF )

which is an isomorphism when F is simple.

Proof. Choose a locally finite open cover {Λi}i∈I of Λ. Then it suffices to construct Ki on

Λi and glue them using δij : Ki
∼−→ Kj in µshV (∆Λi∩Λj ).

Let Fi be a simple sheaf on Λi and let Ki = π−1
1 F ⊗ π−1

2 DF . Then we claim that

there exists a (coherent choice of) δij : Ki
∼−→ Kj in µshV (Λi ∩Λj) that is compatible with
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δF ∈ H0(∆Λi∩Λj , µhom(k∆, π
−1
1 F ⊗ π−1

2 DF )) which is the image of identity under the
map

Hom(F ,F )
∼−→ δ!RH om(π−1

1 F , π!
2F ))

∼−→ Hom(k∆, RH om(π−1
1 F , π!

2F ))

→ H0(∆Λi∩Λj , µhom(k∆, π
−1
1 F ⊗ π−1

2 DF )).

By proposition 4.4, we know when Fi is simple, µhom(k∆, π
−1
1 Fi⊗π−1

2 DFi) ' k∆Λi∩Λj
.

There is an isomorphism

µhom(π−1
1 Fi ⊗ π−1

2 DFi, π
−1
1 Fj ⊗ π−1

2 DFj)|∆Λi∩Λj

→µhom(k∆, π
−1
1 Fi ⊗ π−1

2 DFi)

⊗ µhom(π−1
1 Fi ⊗ π−1

2 DFi, π
−1
1 Fj ⊗ π−1

2 DFj)

→µhom(k∆, π
−1
1 Fj ⊗ π−1

2 DFj).

Now we just let δij be the preimage of δFj
under the isomorphism. �

Definition 6.4. Let Λ ⊂ Ṫ ∗M be a locally closed conical Lagrangian, and ŨΛ = ∆Λ×Λ×(−Λ)

UΛ×(−Λ). Then the Maslov sheaf is

M̃Λ = mΛ×(−Λ)(K∆Λ
)|ŨΛ

∈ DbLoc(ŨΛ).

In addition, MΛ = v−1
Λ M̃Λ where vΛ is the map UΛ ×Λ UΛ → ŨΛ, (l1, l2) 7→ l1 ⊕ (−l2).

Proposition 6.7. Let Ũ ⊂ ŨΛ be a connected component. Then MΛ|Ũ ∈ DLoc(Ũ) is a

rank 1 local system in degree τΛ×(−Λ)(Ũ)/2.

Proof. Without loss of generality, we assume that Λ = T ∗NM . Consider locally a simple

sheaf F ∈ Db
(Λ)(M) such that

K∆Λ
' π−1

1 F ⊗ π−1
2 DF .

We may assume that F = kN . Then since ωN |M = k[dimN − dimM ] on N ,

K∆Λ
' π−1

1 kN ⊗ π−1
2 DkN = kN×N [dimN ].

Choose a function ϕ on M ×M such that ϕ|N×N is a non-degenerate quadratic form with
signature τΛ(l). Then

mΛ(LN×N )l ' RΓϕ−1([0,+∞))(LN×N )(x,x) ' L[−τΛ(l)/2− dimN ].

Therefore since L ' kN×N [dimN − dimM ] we know that mΛ(LN×N )l ' k[−τΛ(l)/2]. �

Definition 6.5. Let Λ ⊂ Ṫ ∗M be a locally closed conical Lagrangian. Then the sheaf of
categories µgermΛ is defined by mapping all open subsets Λ0 ⊂ Λ to categories of pairs
(L , uL ), where L ∈ DLocUΛ

(UΛ0), and

uL : MΛ ⊗ π−1
2 L

∼−→ π−1
1 L

being commutative with the composition of Maslov sheaves.

Guillermou defined the Maslov sheaf as π−1
1 F ⊗ π−1

2 D′F . However, I think instead the

correct definition should be π−1
1 F⊗π−1

2 DF in order to get the degree shifting τΛ(l)/2. The
point is that D′ ◦mΛ = m−Λ ◦D instead of m−Λ ◦D′. Hence although what one really want
is π−1

1 L ⊗π−1
2 D′L , when defining the Maslov sheaf one should really use π−1

1 F ⊗π−1
2 DF .

We didn’t define compositions between Maslov sheaves. Basically it is an isomorphism

π−1
12 MΛ ⊗ π−1

23 MΛ
∼−→ π−1

13 MΛ,
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where πij : U3
Λ → U2

Λ is the projection to the i, j-th components. The crucial fact one will
use is that

π−1
12 MΛ ⊗ π−1

23 MΛ '
(
(π−1

1 L ⊗ π−1
2 D′L )⊗ k

)
⊗
(
k⊗ (π−1

1 L ⊗ π−1
2 D′L )

)
' π−1

1 L ⊗ π−1
2 (L ⊗D′L )⊗ π−1

3 D′L

' π−1
1 L ⊗ π−1

3 D′L ' π−1
13 MΛ.

Theorem 6.8. Let Λ ⊂ Ṫ ∗M be a locally closed conical Lagrangian. Then

mΛ : µshΛ(Λ0) → µgermΛ(Λ0)

F 7→
(
mΛ0(F ), uF : MΛ ⊗ π−1

2 mΛ0(F )
∼−→ π−1

1 mΛ0(F )
)

is an equivalence of stacks.

Proof. First we check that this formula indeed defines a functor.
We consider an open cover with simple objects F0 in each Λ0 ⊂ Λ. It can be easily seen

that one can replace the functor in the statement by

µshΛ(Λ0) → µgermΛ(Λ0)

F 7→
(
mΛ0(F0)⊗ σ−1

Λ0
µhom(F0,F ), umΛ0

(F0) ⊗ id
)
.

We know that as F0 is simple, µhom(F0,−) is an equivalence.
Assume that Λ0 is contractible and there is a section s : Λ0 → U . Let L0 = mΛ0(F0).

We prove that the functor

tL0 : DbLocΛ(Λ0) → µgermΛ(Λ0)

L 7→ (L0 ⊗ σ−1
Λ0

(L ), uL0 ⊗ idL )

is an equivalence. For (L , uL ) ∈ µgermΛ(Λ0), define

jL0(L , uL ) = s−1(L ⊗D′L0).

We prove that tL0 and jL0 are mutually inverse.
It suffices to show that there is an isomorphism (L , uL ) ' tL0 ◦ jL0(L , uL ). Since

uL0 : MΛ ⊗ π−1
2 L0

∼−→ π−1
1 L0,

we have an isomorphism MΛ ' π−1
1 L0 ⊗ π−1

2 D′L0. Hence (by dualizing π−1
1 L0) there

exists

uL ⊗ idD′L0 : π−1
2 (L ⊗D′L0)

∼−→ π−1
1 (L ⊗D′L0).

Let i : UΛ0 → U2
Λ0

be i(l) = (l, s ◦ σΛ0(l)). By applying i−1 (and dualizing D′L0) we have

L
∼−→ L0 ⊗ σ−1

Λ0
s−1(L ⊗D′L0),

which essentially means that L ' L0 ⊗ σ−1
Λ0

(jL0(L , uL )). In addition, one can check that
uL = uL0 ⊗ ids−1(L⊗D′L0). This completes the proof. �

6.2.2. Twisting of Local Systems. Consider a local system L ∈ DbLoc(M). Then it deter-
mines a homomorphism ε : π1(M) → GL(n,R) → Z/2Z. In the previous section, we’ve
considered local systems on UΛ. However, π : UΛ → Λ may not have connected fibers.
Hence we embed the fiber UΛ,p into a connected space and first consider the monodromy
along the fibers UΛ,p.

Our main goal will be to show that the monodromy information actually completely
recovers the module structure over the diagnol or Maslov sheaf, so that we can throw away
the notion of microlocal germs.
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Definition 6.6. Let l ∈ UΛ,p be a Lagrangian subspace transverse to both TpΛ and TpT
∗
xM .

Let

up(l) : TpT
∗
xM → TpT

∗M
∼−→ TpΛ⊕ l→ TpΛ.

The embedding map is

i : UΛ,p → Iso+(TpT
∗
xM ⊗ Λn(TpT

∗
xM), TpΛ⊗ Λn(TpΛ))

l 7→ up(l)⊗ Λnup(l).

For any connected component of UΛ,p, let ε′p be the composition

π1(UΛ,p)→ π1(Iso+(TpT
∗
xM ⊗ Λn(TpT

∗
xM), TpΛ⊗ Λn(TpΛ)))

εp−→ Z/2Z,

where εp is the canonical morphism.

Proposition 6.9. Let F ∈ Db
(Λ)(M). For any connected component of UΛ,p, the mon-

odromy for mΛ(F )UΛ,p
is ε′p.

Let Λ = T ∗NM where N = {x|x1 = ... = xk = 0}. Then any Lagrangian subspace in UΛ

can be represented by a symmetric matrix A so that Ak+1,...,n|k+1,...,n = (Aij)k+1≤i,j≤n is
non-degenerate.

lA = {(ν,Aν)|ν ∈ TxM, A : TxM → T ∗xM}.
Consider up(A) : TpT

∗
xM → TpΛ. If up(A)(0, η) = (0, ..., xk+1, ..., xn, ξ1, ..., ξk, 0, ..., 0), then

(0, η) = (ν,Aν) + (0, ..., xk+1, ..., xn, ξ1, ..., ξk, 0, ..., 0).

As a result we have

η = (ξ1, ..., ξk, 0, ..., 0)−A(0, ..., 0, xk+1, ..., xn).

If we consider the coordinate system (ξ1, ..., ξk, xk+1, ..., xn) for TpΛ, then

up(A) =

(
Ik A1,...,k|k+1,...,n

0 Ak+1,...,n|k+1,...,n

)−1

.

This will enable us to do calculations in the following proof.

Proof. Without loss of generality, we assume that Λ = T ∗NM and choose a local chart so
that N = {x ∈ Rn|x1 = ... = xk = 0}. Then F ' LN near p ∈ T ∗NM . Since Z is the initial
object in the category of rings, we assume that F ' ZN near p ∈ T ∗NM .

A Lagrangian plane in UΛ,p can be represented by a symmetric matrix A so that the
determinant det((Aij)i,j≥k+1) 6= 0. Fixing a connected component U is the same as fixing
sgn(A). Let’s say sgn(A) = 2l + k − n. After choosing a base point

diag(0, ..., 0, 1, ..., 1,−1, ...,−1).

π1(U) is generated by Γij (k + 1 ≤ i ≤ k + l, j ≥ k + l + 1) where

(Γij(θ))pq =


±δpq, (p, q) 6= (i, i), (i, j), (j, i) or (j, j),

sin θ, (p, q) = (i, j) or (j, i),

cos θ, (p, q) = (i, i),

− cos θ, (p, q) = (j, j).

One can compute that ε′p(Γij) = −1. However, the canonical map εp is surjective. Hence it
suffices to show that the monodromy of mΛ(ZN ) is −1.

Define the admissible function along Γij to be

ϕθ|N = xTk+1,...,nΓij(θ)xk+1,...,n.
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Then by Morse theory, ϕ−1
θ ([0,+∞)) ∩N is homotopy equivalent to the stable manifold of

ϕθ. Now we know

mΛ(ZN )Γij(θ) ' RΓϕ−1
θ ([0,+∞))(ZN ) ' H∗c (ϕ−1

θ ([0,+∞));Z).

The stable manifold of ϕθ is

Vθ = 〈eθ, eα|k + 1 ≤ α ≤ k + l, α 6= i〉 , eθ = cos(θ/2)ei + sin(θ/2)ej .

Since the loop of unstable manifolds is not orientable, the monodromy is −1. �

We remark here that the space of non-degenerate symmetric matrices is a union of flag
varieties. The fundamental group can thus be calculated.

Now for a fiber bundle E →M , we define the category of local systems whose monodromy
along fibers are always fixed to be ε : H1(E)→ Z/2Z.

Definition 6.7. Let E → M be a fiber bundle and ε : H1(E) → Z/2Z. Then the category

DbLocε(E|M) consist of local systems L so that the monodromy of L |Ex is εx. The sheaf
of categories DLocεE|M is the sheafification of U 7→ DbLocε(U).

Lemma 6.10. Let E →M be a fiber bundle and U →M a subbundle with connected fibers.
Then there is an equivalence of stacks DbLocεE|M ' D

bLocεU |M .

Definition 6.8. Let Λ ⊂ Ṫ ∗M be a conical Lagrangian. Then

IΛ = Iso+(i∗Λπ
−1T ∗M ⊗ Λn(i∗Λπ

−1T ∗M), TΛ⊗ Λn(TΛ))

is a fiber bundle with fiber

Iso+(TpT
∗
xM ⊗ Λn(TpT

∗
xM), TpΛ⊗ Λn(TpΛ)).

The tensor product here is added in order to make sure the resulting map is in GL+(n,R)
since we don’t know whether up(l) itself is in GL+(n,R).

However, when passing from DLocε
′

UΛ|Λ to DLocε
′

IΛ|Λ, there is an issue, that is, UΛ does

not have connected fibers, so we won’t get an equivalence of stacks. Hence instead we
stabilize by ΞN = T ∗RN−1RN ⊂ T ∗RN . Stabilization will introduce degree shifting of Maslov
sheaves by the Maslov potential.

Lemma 6.11. Let Λ ⊂ Ṫ ∗M be a locally closed conical Lagrangian, µΛ = 0 and UΛ has
finitely many components Ui (i ∈ I). Then there exists N ∈ N and components Vi (i ∈ I) of
UΞN such that Ui × Vi (i ∈ I) are in the same component W ⊂ UΛ×ΞN .

Proof. Note that the Maslov index τΛ×ΞN = τΛ − τΞN classifies all connected components.
The Cech cocycle (τΛ(Ui)−τΛ(Uj))i,j∈I in H1(Λ;Z) is twice the Maslov class, which is equal
to zero. Hence one can find (ni)i∈I such that

τΛ(Ui)− τΛ(Uj) = 2(ni − nj).

Now it suffices to choose N large enough so that the Maslov index on ΞN can be large
enough, and consider Vi to be the component with Maslov index 2ni. �

We explain here why (τΛ(Ui) − τΛ(Uj))i,j∈I defines the Maslov class in H1(Λ;Z) (the
reader may refer to Geometric Asymptotics, Guillemin & Sternberg, Chapter IV, Section 3
for a complete proof). Firstly, each component Λi = π(Ui) admits a grading. This can be
seen through applying the map

ui : i∗ΛT
∗M → TΛ, up(Ui) : TpT

∗
xM → TpΛ.
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If these gradings or trivializations can be glued together depends on the transition functions
(µij)i,j∈I = (ui ◦ u−1

j )i,j∈I . Note that the Maslov class is the pull-back of the generator

σ ∈ H1(S1) by
θΛ : Λ→ LGr(T ∗M)→ S1, Up 7→ det(Up)

2

where Up ∈ U(n)/O(n) ' LGrp(T ∗M). Consider the commutative diagram

H0(Λ;C×Λ ) ←− H0(S1;C×
S1)

↓ ↓
H1(Λ;Z) ←− H1(S1;Z)

where C×X is the sheaf of S1-valued functions on X, and the vertical arrows are given by

z 7→ (log z)/2π
√
−1. Since the generator in H1(S1;Z) is given by the identity section in

H0(S1;C×
S1), we know that the image of the section θΛ ∈ H0(Λ;C×Λ ) in H1(Λ;Z) is just the

Maslov class. However, we claim that

1

2π
√
−1

log
(
det(µij)

2/|det(µij)|2
)

=
1

2
(τΛ(Ui)− τΛ(Uj)).

Indeed, the left hand side is equal to the number of eigenvalues that change from negative
to positive, and so is the right hand side. This shows that ((τΛ(Ui) − τΛ(Uj))/2)i,j∈I is
indeed the Maslov class.

Lemma 6.12. Let Λ ⊂ Ṫ ∗M be a locally closed conical Lagrangian, µΛ = 0 and UΛ has
finitely many components. Suppose F ∈ Db

(Λ)(M) is simple along Λ. Then there exists

L ∈ Locε(IΛ|Λ) such that
(1). mΛ(F )|U ' L |U [dU ] for some dU ∈ Z where U ⊂ UΛ is a connected component and

dU − dU ′ = (τΛ(U)− τΛ(U ′))/2;

(2). mΛ×(−Λ)(π
−1
1 F ⊗ π−1

2 DF )|Ũ2l
Λ
' (π−1

1 L ⊗ π−1
2 D′L )|Ũ2l

Λ
[−l] where Ũ2l

Λ is the com-

ponent with Maslov potential 2l.

Proof. We only prove (1) (the proof for (2) is similar). Let W be as in the previous lemma.
Let L = mΛ×ΞN (π−1

1 F ⊗ π−1
2 kN )|W [d] be a local system concentrated in degree 0. Since

DbLocε(IΛ×ΞN |Λ × ΞN ) ' DbLocε(W |Λ × ΞN ), L extends to IΛ×ΞN . However, one can
prove that there is an unique isomorphism

mΞN (kN )|V kΞN
' LN |V kΞN

[bk/2c].

Note that LN is the only rank 1 object in Locε(ΞN ). Therefore we have a unique decomposi-
tion L ' π−1

1 LΛ⊗π−1
2 LN . Therefore the isomorphism mΛ×ΞN (π−1

1 F ⊗π−1
2 kN )|Ui×V kΞN

[d]

and mΞN (kN )|V kΞN
' LN |V kΞN

[bk/2c] together gives the isomorphism we want. �

Now we can take into account the degree shifting and modify our definition of microlocal
germs. Similarly one can define the composition of Maslov sheaves, which will again be
omitted though.

Definition 6.9. Let Λ ⊂ Ṫ ∗M be a locally closed conical Lagrangian. Then the modified
Maslov sheaf is M ′

Λ|U = MΛ[τΛ×(−Λ)(U)/2] where U ⊂ U2
Λ is a connected component. The

sheaf of categories µgerm′Λ is defined accordingly.

Now one can check that the twisting by the monodromy along fibers actually recovers
the module structure over the diagnol or the Maslov sheaf, in other words, the information
of microlocal germs.

Theorem 6.13. Let Λ ⊂ Ṫ ∗M be a locally closed conical Lagrangian. Then DbLocεIΛ|Λ →
µgerm′Λ is an equivalence of stacks.
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Proof. It suffices to recover the isomorphism

u′L : M ′
Λ ⊗ π−1

2 L → π−1
1 L .

By passing to a small open subset, we may assume that Λ is contractible. Then DLocε(IΛ|Λ)
has a unique object L0 with stalk Z. One can write L = L0 ⊗ σ−1

Λ L ′ and now the result
becomes trivial. �

6.2.3. Maslov Class and Stiefel-Whitney class. In the previous section we are assuming that
the Maslov class µΛ = 0. Here we consider the Maslov class and show that the obstruction
of existence of global sections is exactly characterized by the Maslov class (determining the
degree shifting) and the relative second Stiefel-Whitney class (determining the twisting).

Definition 6.10. Let C be the sheaf of derived (differential graded) categories, {Λi}i∈I an
open cover of Λ, and a = (aij)i,j∈I a degree 1 Cech cocycle in Z. Then Ca is the sheaf of
categories glued by Ci and Ci|Λi∩Λj → Cj |Λi∩Λj , F 7→ F [aij ].

Lemma 6.14. Let Λ ⊂ Ṫ ∗M be a locally closed conical Lagrangian with Maslov class µΛ.
Then there is an open cover {Λi}i∈I of Λ and a representative µ = (µij)i,j∈I of µΛ such
that µgermΛ ' (µgerm′Λ)µ.

Proof. Consider an open cover {Λi}i∈I coming from connected components {Ui}i∈I of UΛ

with simple sheaves Fi along Λi. Then mΛ(Fi) will be concentrated in degree dUi . Then
(dUi − dUj )i,j∈I represents the Maslov class of Λ. The gradings work out well because

dUi − dUj =
1

2
(τΛ(Ui)− τΛ(Uj)) =

1

2
τΛ×(−Λ)(Ui × (−Uj)).

Now we can define the equivalence µgermΛ(Λi) → µgerm′Λ(Λi) locally by L |Ui 7→
L [−dUi ]|Ui . This can be glued to a global isomorphism. �

Theorem 6.15. Let Λ ⊂ Ṫ ∗M be a locally closed conical Lagrangian with Maslov class µΛ.
Then there is an open cover {Λi}i∈I of Λ and a representative µ = (µij)i,j∈I of µΛ such
that

µshΛ ' (DbLocεIΛ|Λ)µ.

In other words, there exists a global section in µshΛ iff µΛ = 0.

Definition 6.11. Let E1,2 → Λ be vector bundles of the same rank and {Λi}i∈I be a good

cover of Λ. Let u = (uij)i,j∈I be a Cech cochain given by isomorphisms uij : Li|Λij
∼−→ Lj |Λij

of rank 1 local systems twisted by

ε : H1(IE1,E2,Λ) = H1 (Iso+(E1 ⊗ Λn(E1), E2 ⊗ Λn(E2)))→ k×,
and let w = (wijk)i,j,k∈I = (uki ◦ ujk ◦ uij)i,j,k∈I . Then the relative second Stiefel-Whitney
class of E1 and E2, denoted by rw2(E1, E2), is the class represented by w in H2(Λ;Z/2Z).

We claim that when k = Z (k× = Z/2Z), rw2(E1, E2) = w2(E2⊗ΛnE2)−w2(E1⊗ΛnE1).
First when E1 is trivial, IknΛ,E2,Λ is the principal bundle whose associate bundle is E2⊗ΛnE2.

w2(E2⊗ΛnE2) is the obstruction for the principal SO(n)-bundle to be lifted to a principal
Spin(n)-bundle, so let vij : Λij → SO(n) be the transition function, and ṽij : Λij → Spin(n)
be the lifting, then

w̃ = (w̃ijk)i,j,k∈I = (ṽki ◦ ṽjk ◦ ṽij)i,j,k∈I
defines the second Stiefel-Whitney class. On the other hand, note that for an ε-twisted
line bundle on Λij × SO(n), its corresponding principal bundle is, since ε is nontrivial,
Λij × Spin(n). Hence

uij : Λij × Spin(n)→ Λij × Spin(n)
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is indeed the lifting of the transition function on the SO(n)-principal bundle. Therefore it
defines the second Stiefel-Whitney class.

Theorem 6.16. Let Λ ⊂ Ṫ ∗M be a locally closed conical Lagrangian. Then there exists a
simple global section in µshΛ iff rw2(i∗Λπ

−1T (T ∗M), TΛ) = 0.

6.3. Convolution and Anti-microlocalization. From this section on, we assume that
the manifold we’re considering is M ×R, where the R factor is required as the direction of
the Reeb vector field, and thus the conical Lagrangian lives in Ṫ ∗τ>0(M ×R) (where τ is the
fiber coordinate for the R component).

By Theorem 6.8, we know that there is a global simple object F ∈ µshΛ(Λ). There
exists an open covering {Λi}i∈I of Λ such that F |Λi is represented by Fi ∈ Db

(Λi)
(M), and

the transition functions are

ūij ∈ H0(Λi ∩ Λj , µhom(Fi,Fj)|Λi∩Λj ).

Remember our goal is to give a sheaf F ∈ Db
Λ(M). Therefore we need to represent ūij by

elements in HomDb
(Λi∩Λj)

(M)(Fi,Fj) in order to glue a global object.

In fact, we would like to make use of the R direction, or the Reeb direction and consider
translation along that direction. In addition we want to consider all translations at a time,
which will require another extra R+ factor to encode how much we are translating. We will
construct a functor ΨU such that

lim−→
ε>0

HomDb(U×(0,ε))(Ψ
ε
U (F ),Ψε

U (G )) ' H0(Ṫ ∗U, µhom(F ,G )).

Such a functor ΨU will be built by convolution. The key idea is coming from Tarmarkin,
where he showed that the convolution functor

k[0,+∞) ?− : Db(M × R)→ Db(M × R); F 7→ k[0,+∞) ?F

is the projection from Db(M × R) to the left orthogonal complement of Db
τ≤0(M × R),

i.e. Db(M ;T ∗τ≤0(M × R)) is realized as the left orthogonal complement of Db
τ≤0(M).

Definition 6.12. Let U ⊂M × R be an open subset. Define the projections

q : M × R× R+ →M × R, (x, t, u) 7→ (x, t)

r : M × R× R+ →M × R, (x, t, u) 7→ (x, t− u).

Then let

U+ = r−1(U) ∩ q−1(U) = {(x, t, u) ∈M × R× R+|x× [t− u, t] ⊂ U}.
and write qU = q|U+ , rU = r|U+. Let γ = {(t, u) ∈ R × R+|0 ≤ t < u}, γ1 = {(t, u) ∈
R× R+|t = u}. Let s : M × R2 × R+ →M × R× R+ be the addition. Then

ΨU (F ) = kγ ?′F = Rs!(π
−1
1 F ⊗ π−1

2 kγ)U+ .

One may wonder why we restrict to U+ after applying the convolution functor. This can
be illustrated from the following diagram, which shows what will happen when we finally
start to glue.

In fact, when gluing together U1×R and U2×R, the singular supports in different pieces
may overlap because extra Reeb chords may be created after gluing. Restricting to U1+, U2+

is preventing any extra Reeb chord from shrinking (However, this does not mean that in a
single piece U1 or U2, there cannot exist any Reeb chords that shrink to a point).

As a counterexample, one may consider a stablized Legendrian knot in T ∗,∞R2. Consider
the doubling link constructed by pushing forward along the Reeb direction by ε > 0. When
ε is small, there is a sheaf with singular support in the doubled link. This can be down by
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Figure 7. Let U1, U2 be two intervals and Λ consists of some isolated points.
After applying the convolution functor, the singular support of the sheaf will
be the blue rays. In the dark grey region where U1 ×R and U2 ×R overlap,
one can see that the singular support don’t glue. Hence one should restrict
to U1+, U2+ where such things won’t happen.

Figure 8. On the left is the front projection of a two copy of a stablized
knot when ε is small, together with a sheaf whose singular support is the
two copy. On the right is the front projection of a two copy when ε is large,
where no such sheaf exists.

gluing two simple sheaves on two different charts of the zig-zag (since there is no simple
sheaves along a zig-zag, one has to split into two different charts). However when ε is large
enough so that the front projections of the two copies become disjoint, then it is well known
that no such sheaves can exist (see, for example, Shende-Treumann-Zaslow). And this is
exactly because when ε > 0 is large, Reeb chords between the two different charts
will shrink and create double points in the process.

However, one may wonder why this is not the case for some other Legendrian knots,
for example the standard unknot. There the unique Reeb chord may also shrink, however,
when ε > 0 is large one can still find a sheaf whose singular support is the two copy of
unknot. This is because one can choose an open cover consisting of a unique open subset
U and a sheaf that represents the simple object in µsh. Then one does not need to glue.
Here one can see that in a single chart Reeb chords are allowed to shrink, as long as no
extra Reeb chords connecting two different charts shrink.

Lemma 6.17. Let a < b and F ∈ Db
τ≥0(R). Then k(a,b] ?

′F = 0.
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Proof. Fix x ∈ R. By definition we have

(k(a,b] ?
′F )x = RΓc(s

−1(x), π−1
1 k(a,b] ⊗ π−1

2 F |s−1(x))

= RΓc(R,F ⊗ k[x−b,x−a)).

Notice that there is an exact triangle

RΓ([x− b, x− a],F )→ Fx−a → RΓc(R,F ⊗ k[x−b,x−a))
[1]−→

and the first map is an isomorphism by microlocal cutoff lemma. This proves the result. �

Lemma 6.18. For F ∈ Db
τ≥0(M × R), the canonical morphism r−1

U F [−1] → kγ◦ ?′ F is
an isomorphism, and there is an distinguished triangle

r−1
U F [−1]→ ΨU (F )→ q−1

U F
[1]−→ .

Proof. Note that r−1
U F ' kγ1 ?

′F . Let γ′ = γ̄\γ0. We have a distinguished triangle

r−1
U F [−1]→ kγ◦ ?′F → kγ′ ?′F

[1]−→ .

To prove the first morphism is an isomorphism, it suffices to show that kγ′ ?′ F ' 0. This
is because

(kγ′ ?′F )(x,u) ' k(0,u] ?
′F ' 0.

Now the theorem follows from the standard exact triangle

kγ◦ ?′F → kγ ?′F → kγ0 ?
′F

[1]−→

and the fact that q−1
U F ' kγ0 ?

′F . �

Lemma 6.19. Let F ∈ Db(U) and V ⊂ U be an open subset. Assume that for any
x ∈M , Vx = V ∩ ({x} ×R), F |Vx is locally constant. Then ΨU (F )|V ' 0. In particular if
SS(F |V ) ⊂ V ⊂ T ∗V , then ΨU (F )|V ' 0.

Proof. Note that ΨVx(F |Vx) ' ΨU (F )|Vx and Vx is a disjoint union of open intervals. Hence
the result follows from direct computation. �

Remember that our goal is to build a bridge between the RHom(−,−) of convolutions
and µhom(−,−). Define

i : U → U × R≥0, (x, t) 7→ (x, t, 0); j : U × R+ → U × R≥0, (x, t, u) 7→ (s, t, u).

Our goal is to show the following isomorphism:

Theorem 6.20. Let U ⊂M ×R be open, F ∈ Db
τ≥0(U) and G ∈ Db

τ>0(U). Then we have
a natural isomorphism

i−1Rj∗RH om(ΨU (F ),ΨU (G )) ' Rπ̇U,∗µhom(F ,G ).

In particular for Z ⊂ U being compact we have

Hk(π̇−1
U (Z), µhom(F ,G )) ' lim−→

W :Z⊂⊂W⊂⊂U×R≥0

Hom(ΨU (F )|W ,ΨU (G )[k]|W ).

Therefore, ΨU defines a fully faithful functor between the sheaves of categories

Ψ : µshΛ(Λ)→ lim−→
ε>0

shqdq−1
π (Λ)∪rdr−1

π (Λ)(M × R× (0, ε)).

We use the exact triangle in Lemma 6.17 and hence we prove two Propositions 6.21 and
6.24 separately. Here is the first proposition we need.
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Proposition 6.21. Let F ,G ∈ Db(U). Then there is a natural isomorphism

i−1Rj∗RH om(ΨU (F ), q−1
U G )

∼−→ Rπ̇U,∗µhom(F ,G ).

We need a few lemmas.

Lemma 6.22. Let F ∈ Db
τ≥0(U),G ∈ Db

τ>0(U). Then there are natural isomorphisms

µhom(ΨU (F ), q−1
U G )|Ṫ ∗U+

∼−→ µhom(q−1
U F , q−1

U G )|Ṫ ∗U+

∼−→ RqU,d,!q
−1
U,πµhom(F ,G )|Ṫ ∗U+

.

Proof. For the first isomorphism, using the exact triangle in Lemma 6.17, it suffices to show
that

µhom(r−1
U F [−1], q−1

U G )|Ṫ ∗U+
' 0.

This follows from the fact that supp(µhom(r−1
U F [−1], q−1

U G )) ⊂ SS(r−1
U F ) ∩ SS(q−1

U G ).
The second isomorphism follows from 3.13. �

Lemma 6.23. Let F ,G ∈ Db(U). Then there are natural isomorphisms

i−1Rj∗RH om(ΨU (F ), q−1
U G )

∼−→ i−1Rj∗Rπ̇U+,∗(µhom(ΨU (F ), q−1
U G )|Ṫ ∗U+

).

Proof. Write RH om′(F ,G ) = δ−1RH om(π−1
1 F , π−1

2 G ). By Sato’s exact triangle 3.14, it
suffices to show that

i−1Rj∗(RH om′(ΨU (F ), q−1
U G )) ' 0.

Viewing γ as a subset in M × R2, we have

i−1Rj∗(RH om′(ΨU (F ), q−1
U G )) ' i−1RΓM×R×R+(RH om′(Ψ′U (F ), q−1

U G ))

where Ψ′U (F ) = Rs!(π
−1
1 F ⊗ π−1

2 kγ).
Note that RΓM×R×R+H = HM×R×R≥0

when SS(H ) ⊂ {(x, ξ; t, τ)|τ ≥ 0}. Hence here

we estimate SS(RH om′(Ψ′U (F ), q−1
U G )). Using the fact that SS(kγ) ⊂ {(s, t, σ, τ)| − τ ≤

σ ≤ 0}, we can estimate

SS(Ψ′U (F )|V ) ⊂ {(x, ξ; s, t, σ, τ)| − τ ≤ σ ≤ 0}.
On the other hand, SS(q−1

U G ) ⊂ {(x, ξ; t, τ)|τ = 0}. Therefore

SS(H ) ⊂ {(x, ξ; s, t, σ, τ)|σ ≥ 0}.
Now the right hand side is just RH om′(i−1Ψ′U (F ), i−1q−1

U G ). Let i′ : M × R2 →
M × R2 × R+, (x, s, t) 7→ (x, s, t, 0) and s′ : M × R2 → M × R, (x, s, t) 7→ (s, s + t) (such
that s ◦ i′ = i ◦ s′). Hence by the base change formula

i−1Ψ′U (F ) = i−1Rs!(π
−1
1 F ⊗ π−1

2 kγ) ' Rs′!(i′)−1(π−1
1 F ⊗ π−1

2 kγ) ' 0

because kγ |R×{0} = 0. This completes the proof. �

Proof of Proposition 6.21. By the previous lemmas, it suffices to show that

i−1Rj∗RπU+,∗(RqU,d,!q
−1
U,πµhom(F ,G )|Ṫ ∗U+

) ' Rπ̇U,∗µhom(F ,G ).

This is because by base change formula, since π̇U ◦ qU,π = qU ◦ π̇U+ ◦ qU,d, we have

RπU+,∗(RqU,d,!q
−1
U,πH |Ṫ ∗U+

) ' R(πU+ ◦ qU,d)!q
−1
U,πH |Ṫ ∗U

' q−1
U Rπ̇U,!H |Ṫ ∗U ' q

−1
U Rπ̇U,∗H |Ṫ ∗U .

Now it suffices to show that
i−1Rj∗q

−1
U K ' K .

Note that i−1Rj∗q
−1
U ' i−1RΓU×R+ ◦ π−1

1 . Since SS(π−1
1 F ) ⊂ T ∗U × R, we have

i−1RΓU×R+(π−1
1 F ) ' i−1(π−1

1 F |U×R≥0
) ' F .

This completes the proof. �
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This completes the proof of Proposition 6.21. Here is the second proposition we need.

Proposition 6.24. Let F ,G ∈ Db(U). Then

RH om(ΨU (F ), r−1
U G [−1]) ' 0.

Proof. Let V ⊂ U be an open subset. Then since r−1
V F = r!

V F [−1], by adjunction we have

RHom(ΨU (F )|V , r−1
U G [−1]|V ) ' RHom(ΨV (F |V ), r−1

V G [−1]|V )

' RHom(RrV,!ΨV (F |V ),G [−2]|V ).

Now we prove that RrV,!ΨV (F ) ' 0, ∀F ∈ Db(V ). Let s′ : M × R2 → M × R, (x, s, t) 7→
(x, s+ t) and r′ : M ×R2×R+ →M ×R2, (x, s, t, u) 7→ (x, s, t−u) (such that s′ ◦r′ = r ◦s).
Then

RrV,!ΨV (F ) ' RrV,!(Rs!(π
−1
1 F ⊗ π−1

2 kγ))U+

' Rs′!Rr′!(π−1
1 F ⊗ kπ−1

2 γ ⊗ ks−1U+
)

' Rs′!Rr′!((r′)−1(π′1)−1F ⊗ kπ−1
2 γ∩s−1U+

)

' Rs′!((π′1)−1F ⊗Rr′!kπ−1
2 γ∩s−1U+

).

(Here π1 : M ×R2 ×R+ →M ×R and π′1 : M ×R2 →M ×R2.) Hence it suffices to show
that Rr′! kπ−1

2 γ∩s−1U+
' 0. This follows from direct calculation. �

Now by the previous two propositions and Lemma 6.17, we can deduce the Theorem 6.20.
In fact, we make a remark here that using Lemma 6.23 and Proposition 6.24, one can show
that our functor Ψ actually factors as

Ψ : µshΛ(Λ)
q−1

−−→ lim−→
ε>0

µshqdq−1
π (Λ)(qdq

−1
π (Λ) ∩ Ṫ ∗(M × R× (0, ε)))

←− lim−→
ε>0

shqdq−1
π (Λ)∪rdr−1

π (Λ)(M × R× (0, ε))

where the second functor is microlocalization along qdq
−1
π (Λ) (note that qdq

−1
π (Λ) is disjoint

from rdr
−1
π (Λ)).

6.4. Quantization and Gluing. Throughout this section we will assume that our conical
Lagrangian Λ ⊂ Ṫ ∗(M × R) is the conification of an exact Lagrangian in T ∗M , or equiva-
lently, our Legendrian submanifold Λ/R+ is a Legendrian lift of the exact Lagrangian.

NWe are able to define the quantization of the conical Lagrangian Λ ⊂ T ∗(M × R).
Basically the construction is as follows. Let F ∈ µshΛ(Λ0) be represented by F ∈ Db

Λ0
(U).

Now we consider ΨU (F ) ∈ Db
qdq
−1
π (Λ0)∪rdr−1

π (Λ0)
(M × R× R+). Then

F ′ = ΨU (F )|M×R×{ε} ∈ Db
Λ0∪Tε(Λ0)(M × R)

where Tε is the translation along R by ε. Finally we cut off the sheaf in an open subset
V ⊂ M × R diffeomorphic to M × R such that Λ0 ⊂ V while Tε(Λ0) ∩ V = ∅. Then F |V
gives the sheaf we are seeking for.

However, one may note that this procedure we just described is completely cheating
since we’re starting from a globally defined sheaf and trying to construct such a sheaf (as
if we don’t know it is already there). The real problem is about gluing. Namely, we don’t
know (1). if the transition functions for sheaves on Db

qdq
−1
π (Λ0)∪rdr−1

π (Λ0)
(M ×R×R+) gives

transition functions on each slice; (2). if the translation Tε doesn’t change the morphism
space between local representatives. This will be our task.
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Here is where we need the condition that the Legendrian submanifold comes from an
exact Lagrangian, which ensures that there are no Reeb chords and thus the sheaf theory
on different slices doesn’t change.

Definition 6.13. For u ∈ R the translation Tu is Tu : T ∗(M×R)→ T ∗(M×R), (x, ξ; t, τ) 7→
(x, ξ; t+ u, τ). For Λ ⊂ T ∗(M × R), Λu = Λ ∪ Tu(Λ).

Lemma 6.25. Let Λ ⊂ T ∗τ>0(M × R) be a conification of an exact Lagrangian in T ∗M .

Then there is a Hamiltonian isotopy ϕ : Ṫ ∗(M × R)× R+ → Ṫ ∗(M × R) such that

dϕ(Λ1) = qdq
−1
π (Λ) ∪ rdr−1

π (Λ), ϕu(Λ1) = Λu.

Let Λ+ = qdq
−1
π (Λ) ∪ rdr−1

π (Λ). Then by Guillermou-Kashiwara-Schapira, there are
equivalences of categories

Dlb
Λ+

(M × R× R+)
∼−→ Dlb

Λ+
(M × R× (0, u))

∼−→ Dlb
Λu′

(M × R).

Corollary 6.26. Let Λ ⊂ T ∗τ>0(M × R) be a conification of an exact Lagrangian in T ∗M .

F ,G ∈ Db
Λ(M × R). Then

RHom(F ,G )
∼−→ RHom(q−1F , r−1G )

∼−→ RHom(F , Tu,∗G ).

Proof. Since r is a submersion with contractible fibers, we have

RHom(F ,G )
∼−→ RHom(r−1F , r−1G ).

Consider the exact triangle in Lemma 6.17 we have

RHom(r−1F , r−1G )→ RHom(q−1F , r−1G )→ RHom(ΨM×R(F ), r−1G )
[1]−→ .

Since we know that Rr!ΨM×R(F ) ' 0, the corollary is true. �

Now we start gluing. First let’s introduce some notations.

Definition 6.14. Let Λ0 ⊂ Λ ⊂ T ∗τ>0(M × R), {Ui}i∈I be an open covering of M . Denote
by Λij the connected components of Λ ∩ T ∗Ui. Let

Wij = π1(π̇Ui(Λ0 ∩ Λij)), Vij = Ui ∩ (Wij × R).

We assume that
(1). ∂Vij ∩ Ui is smooth;

(2). Ṫ ∗Ui ∩ Λij ∩ (−N∗Vij) = ∅, Ṫ ∗Λij Ṫ
∗Ui ∩ T ∗∂Ṫ ∗Vij Ṫ

∗Ui = ∅;
(3). Ṫ ∗Ui ∩ (Λij +N∗Vij) ∩ (Λij′ +N∗Vij′) = ∅, ∀ j 6= j′.
Under this assumption, we write

Λext
0 =

⋃
i∈I,j∈Ji

(Ṫ ∗Ui ∩ (Λij +N∗Vij)).

Note that near a point, Vij only depends on Λ0, so Λext
0 only depends on Λ0. In addition

by (3) we know that Λext
0 ∩ Λ = Λ̄0.

Lemma 6.27. Let Λ ⊂ Ṫ ∗M be a conical Lagrangian and F ,G ∈ Db(M) such that
˙SS(F ) = ˙SS(G ) = Λ. Let V ⊂M be open such that ∂V is smooth, and assume that

(1). (−N∗U) ∩ Λ = ∅;
(2). Ṫ ∗ΛṪ

∗M ∩ Ṫ ∗
∂Ṫ ∗U

Ṫ ∗M = ∅.
Then µhom(RΓU (F ),G )|Ṫ ∗M ' µhom(F ,G )Ṫ ∗U |Ṫ ∗M .
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Proof. Since (−N∗U)∩Λ = ∅, RΓV (F ) ' FU . Thus we have a natural morphism FU → F ,
inducing

u : µhom(F ,G )→ µhom(FU ,G ).

One can check that supp(µhom(FU ,G )) ⊂ T ∗U , and u is an isomorphism on Ṫ ∗U . Now
we check that

˙SS(µhom(FU ,G )) ∩N∗(Ṫ ∗U) = ∅.

We know that SS(µhom(FU ,G )) ⊂ C(Λ,Λ−N∗U). One can check this fact by hand.
Let H be the mapping cone of

u : µhom(F ,G )Ṫ ∗U → µhom(FU ,G ).

Then supp(H ) ⊂ ∂(Ṫ ∗U). Because the inclusion ∂(Ṫ ∗U)→ T ∗M is proper,

T ∗
∂(Ṫ ∗U)

T ∗M |supp(H ) ⊂ SS(H ).

However, ˙SS(H ) ∩N∗(Ṫ ∗U) = ∅. Therefore supp(H ) has to be empty. This finishes the
proof. �

Proposition 6.28. Let Λ ⊂ T ∗τ>0(M × R) be the conification of an exact Lagrangian sat-
isfying the assumptions. Let c = (cjj′)j,j′∈

⋃
i Ji

be a Cech coboundary, (bj)j∈
⋃
i Ji

be its

primitive, and F ∈ (µshΛ(Λ0))c be a pure object with representative

Fij (i ∈ I, j ∈ Ji), uij,i′j′ ∈ Hcjj′ (Λ0 ∩ Λjj′ , µhom(Fij ,Fi′j′)) (i, i′ ∈ I, j ∈ Ji, j′ ∈ Ji′).

Then there exists ε > 0, F ∈ Db
qdq
−1
π (Λ)

(M × R× (0, ε)) and isomorphisms

ϕi : F |Ui,ε
∼−→
⊕
j∈Ji

ΨUi

(
RΓVjFj [bj ]

)
|Ui,ε ,

where Ui,ε = Ui,+ ∩ (M × R× (0, ε)), such that

(1). supp(F ) ⊂ γ ? π̇M×R(Λ0) and

˙SS(F ) ⊂ qdq−1
π (λext0 ) ∪ rdr−1

π (λext0 ) ∪ T ∗M × (R× R+);

(2). ϕi ◦ ϕ−1
i′ |Uii′ represents uij,i′j′ ∈ Hcjj′ (Λ0 ∩ Λjj′ , µhom(Fij ,Fi′j′)), j ∈ Ji, j′ ∈ Ji′;

(3). ϕi induces an isomorphism F
∼−→ q−1(F ).

Proof. Let U ′i be a neighbourhood of U i on which Fi is defined, and Λ is non-characteristic
for ∂U ′i . This will allow us to write down the isomorphisms

(kΛ)Ṫ ∗U i ' RΓṪ ∗UikΛ, (kΛ)Ṫ ∗V i ' RΓṪ ∗VikΛ.

By the assumption, we know that when Λij ∩ Λi′j′ = ∅, we have

supp(µhom((RΓVij (Fi))Vi′j′ ,Fi′)) ⊂ ˙SS((RΓVij (Fi))Vi′j′ ) ∩ ˙SS(Fi′)

⊂(Λij + Ṫ ∗∂VijUi + Ṫ ∗∂Vi′j′Ui) ∩ Λi′j′ = ∅.

Hence by Lemma 6.27 one can obtain that

µhom((RΓVij (Fi))Vi′j′ ,Fi′)|Ṫ ∗Uii′ 'µhom((Fi)Vi′j′ ,Fi′)|Ṫ ∗U ii′
'µhom(Fi,Fi′)Ṫ ∗V ij |Ṫ ∗U ii′ .
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Now by the theorem in the previous section we have

Hk (Uii′ , RH om(Gi,Gi′)) '
⊕

j∈Ji,j′∈Ji′

H l
(
Ṫ ∗U ii′ , µhom(RΓVij (Fi), RΓVi′j′ (Fj))

)
'

⊕
j∈Ji,j′∈Ji′

H l
(
Ṫ ∗U ii′ , µhom((RΓVij (Fi))Vi′j′ ,Fi′)

)
'

⊕
j∈Ji,j′∈Ji′

H l
(
Ṫ ∗U ii′ , µhom(Fi,Fi′)|Ṫ ∗V ij

)
'

⊕
j∈Ji,j′∈Ji′

H l
(
Ṫ ∗U ii′ ∩ Λij , µhom(Fi,Fi′)

)
.

This completes the gluing procedure modulo technical issues about gluing sheaves by local
sections. �

Proof of the main theorem. By the previous proposition there is a sheaf

F1 ∈ Db
Λ+∩Ṫ ∗(M×R×(0,ε))

(M × R× (0, ε)).

Since the sheaf category is invariant under Hamiltonian isotopies, there is a sheaf F2 ∈
Db

Λ+
(M × R× R+) that extends F1. Suppose Λ ⊂ Ṫ ∗(M × [a, b]). Then we restrict F2 to

M × R × {b − a + 2}. Then Λ and Tb−a+2(Λ) are separated by the hyperplane t = b + 1.
Consider a diffeomorphism

f : M × R→M × (−∞, b+ 1), f |M×(−∞,b] = id.

Let F = f−1(F2|M×(−∞,b+1)). Then F satisfies the condition we need. �

6.5. Behaviour of the Sheaf. Before proving any further results using the existence
of sheaf quantization, we first explore the behaviour of the sheaf, and in particular the
behaviour at infinity, in this section.

Definition 6.15. Let Λ ⊂ T ∗(M×R) be the conification of a compact Lagrangian L ⊂ T ∗M ,
in particular π(Λ) ⊂M × [−A,A]. Let F ∈ Db

Λ(M × R). Then

F− = F |M×{−2A}, F+ = F |M×{2A}.

The category Db
Λ,0(M ×R) is the full subcategory of Db

Λ(M ×R) consisting of sheaves with
F− ' 0.

Proposition 6.29. Let F ,G ∈ Db
Λ,0(M × R). Then

RHom(F ,G ) ' RHom(F+,G+) ' RΓ(Λ, µhom(F ,G )).

Proof. The isomorphism RHom(F ,G ) ' RΓ(Λ, µhom(F ,G )) is essentially what we have
proved. Thus it suffices to show that RHom(F ,G ) ' RHom(F+,G+). We apply Corollary
6.26, for u ≥ 2A,

RHom(F ,G ) ' RHom(F , Tu,∗G ) ' RHom(π−1
M F+, Tu,∗G )

' RHom(F+, πM,∗Tu,∗G ).

Consider the exact triangle

Tu,∗G ⊗ k(−∞,A+u) → Tu,∗G → π−1
M G+ ⊗ k[A+u,+∞)

[1]−→ .

Now we show that πM,∗(Tu,∗G ⊗ k(−∞,A+u)) ' 0. Since SS(G ) ⊂ T ∗≥0(M × R) and

supp(Tu,∗G ⊗ k(−∞,A+u)) is compact, by microlocal Morse lemma

πM,∗(Tu,∗G ⊗ k(−∞,A+u)) ' πM,∗(Tu,∗G ⊗ k(−∞,A+u)|(−∞,−A)) ' 0.
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Hence we are through. �

Proposition 6.30. Let k = Z or a finite field, and F ∈ Db
Λ,0(M ×R) be simple. Then F+

is concentrated in a single degree and has rank 1.

Proof. First let k be a finite field and prove that F+ is concentrated in a single degree.
Since |k| <∞, one can choose a finite cover r : M̃ →M such that r−1F+ is a trivial local
system. Write r′ = r × idR, Λ′ = (dr′)−1(Λ) and F ′ = (r′)−1F . Then by finiteness of r,
compactness is preserved,

RHom(F ′+,F
′
+) ' RΓ(Λ′, µhom(F ′,F ′)) = RΓ(Λ′,kΛ′).

The left hand side is symmetrically indexed, while the right hand side is concentrated in
nonnegative degrees. Thus both sides are concentrated in degree 0, which is just what we
claim.

We show that F+ is of rank 1. By the isomorphism we used, it suffices to show that
Λ′ has only 1 component. Suppose the stalk of F+ is kd. Then the dimension of the left
hand side is d2 and can have at most d independent idempotents. However, we know that
the number of independent idempotents is equal to the number of connected components.
Therefore d = 1.

Finally let k = Z. First suppose the stalk of F+ has p-torsion, then by universal co-
efficient theorem we know that F+ ⊗ Z/pZ cannot be concentrated in a single degree. A
contradition. Since F+ is free and its localization along any prime p is concentrated in a
single degree and has rank 1, the claim is proved. �

6.6. Topological Consequences. In this section we show how the sheaf quantization
result can be used to show the restrictions on exact Lagrangians in cotangent bundles. The
nearby Lagrangian conjecture predicts that ALL closed exact Lagrangians L in a cotangent
bundle (of a closed manifold) T ∗Q are Hamiltonian isotopic to the zero section. Currently,
the result by Abouzaid and Kragh claims that the projection

π : L→M

induces a (simple) homotopy equivalence. Now we prove the result.

Theorem 6.31. Let L be a closed exact Lagrangian submanifold in T ∗M where M is closed.
Then the Maslov class µΛ = 0 and π : L→M induces a homotopy equivalence.

We first prove homotopy equivalence under the assumption of vanishing of Maslov class
and the relative Stiefel-Whitney class.

Proposition 6.32. Let Λ be the conification of a compact exact Lagrangian L ⊂ T ∗M
where M . Suppose µΛ = rw2,Λ = 0. Then the natural projection π : Λ → M induces an

isomorphism π∗ : H∗(M ;kM )
∼−→ H∗(Λ; kΛ).

Proof. Choose a simple object F ∈ µshΛ(Λ) with preimage F ∈ Db
Λ,0(M ×R). Let k = Z.

Then since by Proposition 6.30 F+ is a rank 1 local system on M ,

RHom(F+,F+) ' RΓ(M ;kM ).

On the other hand, by Proposition 6.29 we have

RHom(F+,F+) ' RΓ(Λ;µhom(F ,F )) = RΓ(Λ;kΛ).

Finally one need to check that this map is indeed induced by the projection (which is not
so hard). This proves the proposition. �

We then prove the vanishing result for the Maslov class of the exact Lagrangian.



SHEAF THEORY IN SYMPLECTIC GEOMETRY 49

Theorem 6.33. Let Λ ⊂ T ∗(M×R) be the conification of a compact Lagrangian L ⊂ T ∗M .
Then µL = µΛ = 0.

One may want to start with a global section on µshΛ(Λ). First we need the following

lemma, which will allow us to lift Λ as well as M simultaneously to a cyclic cover Λ̃ and M̃
so that µΛ̃ = 0.

Lemma 6.34. The natural projection π : Λ→M induces an injection π∗ : π1(Λ)→ π1(M).

Proof. Let L be the local system on Λ corresponding to the regular representation of
π1(Λ). There exists a simple object F0 ∈ Db

/[1],Λ(M × R), where Db
/[1](M × R) is the

sheaf of categories localized along the shifting functor [1]. Now there exists a unique F1 ∈
Db
/[1],Λ(M × R) such that

µhom(F0,F1) ' L .

Using Proposition 6.29, one can find that in fact

π−1F1,+ ' L ⊗ π−1F0,+.

Let Li be the sheaf associated to U 7→ Hom(Z/2ZU ,Fi,+). These local systems correspond
to representations ρ0,1 of π1(M), and induce representations of π1(Λ). In addition we have
ρ1 ' ρreg ⊗ ρ0. ρi|ker(π∗) are trivial, so is ρreg|ker(π∗). This shows that ker(π∗) = 1. �

Proof of Theorem 6.33. We view µΛ as a map π1(Λ)→ Z. Consider the diagram

Λ̃
df−→ Λ

↓ ↓
M̃

f−→ M

where f : M̃ → M is the universal cover, and Λ̃ is a connected component of df−1(Λ).

By the lemma, we know that Λ̃ is actually the universal cover of Λ. Now we in addition
consider

Λ̃ −→ Λ̃/ ker(µΛ) −→ Λ
↓ ↓ ↓
M̃ −→ M̃/ ker(µΛ) −→ M.

When µΛ 6= 0 the right half square is a diagram of cyclic covering.
Since µΛ̃ = 0 one can pick an object F ∈ µshΛ̃(Λ̃). Then a deck transformation ϕ

on M̃ will give ϕ−1F ' F [mΛ] where mΛ is the Maslov number. This tells us that
F+ ' F+[mΛ]. However by Proposition 6.29, since F is bounded, F+ must also be
bounded. A contradiction. �

Proposition 6.35. Let Λ ⊂ T ∗(M × R) be the conification of a compact Lagrangian L ⊂
T ∗M . Then rw2,L = rw2,Λ = 0.

Proof. Note that (Z/2Z)× is trivial, so when k = Z/2Z, µshΛ(Λ) always has a simple global
object. By Proposition 6.32,

π∗ : H2(M ;Z/2Z)
∼−→ H2(Λ;Z/2Z).

Hence rw2,L = rw2,M = 0. �

These two propositions above tell us that RΓ(Λ; k) ' RΓ(M ;k) without any further
assumptions.

Proposition 6.36. The natural projection π : Λ → M induces an isomorphism π∗ :
π1(Λ)

∼−→ π1(M).
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Proof. We show that first π−1
1 : Loc(M)

∼−→ Loc(Λ) is an equivalence and secondRΓ(M,L ) '
RΓ(Λ, π−1L ). Let F ∈ Db

Λ,0(M × R) be a simple sheaf.
On the one hand, we have

RHom(L ,L ′) ' RHom(F+ ⊗L ,F ⊗L ′)

' RΓ(Λ, µhom(F ⊗ π−1
M L ,F ⊗ π−1

M L ′))

' RΓ(Λ, µhom(F ,F )⊗RH om(π−1L , π−1L ′))

' RHom(π−1L , π−1L ′).

On the other hand, note that µhom(F ,−) induces an equivalence between µshΛ(Λ) and
DbLoc(Λ), so for any LΛ ∈ Loc(Λ) there is a preimage G ∈ µshΛ(Λ). This will give us
G ∈ Db

Λ,0(M × R) and

µhom(F ,G )|Λ ' LΛ.

Without loss of generality we may also assume that F+ ' kM . Then

LM = G+ ' (F ⊗ π−1LM )+.

By Proposition 6.29 this means G ' F ⊗ π−1L ′. Hence

LΛ ' µhom(F ,G )|Λ ' RH om(F+,G+) = π−1LM .

This proves the equivalence.
Finally, to check that RΓ(M,LM ) ' RΓ(Λ, π−1LM ), it suffices to use the fact that

G ' F⊗π−1LM and Proposition 6.29. This finally shows the isomorphism on fundamental
groups π∗ : π1(Λ)→ π1(M). �

Now the main theorem follows from Whitehead theorem.
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