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SHEAF THEORY IN SYMPLECTIC GEOMETRY

WENYUAN LI

ABSTRACT. These are some notes on microlocal sheaf theory and its applications in sym-
plectic and contact geometry. For the general theory of microlocal sheaves, the main source
will be Kashiwara and Schapira’s Sheaves on Manifolds and Schapira’s A Short Review to
Microlocal Sheaf Theory. For sheaf quantization of Legendrian isotopies the sources are
Guillermou, Kashiwara and Schapira’s Sheaf Quantization of Hamiltonian Isotopies and
Applications to Nondisplaceability Porblems and Shende, Treumann and Zaslow’s Leg-
endrian Knots and Constructible Sheaves. For quantization of Legendrian submanifolds
the source is Guillermou’s Quantization of Conical Lagrangian Submanifolds of Cotan-
gent Bundles. Other references include Viterbo’s An Introduction to Symplectic Topology
through Sheaf Theory, Tarmarkin’s Microlocal Conditions for Nondisplaceability, Shende’s
online lecture notes and Nadler’s online lecture notes.
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1. GENERAL SHEAF THEORY

1.1. Sheaves On Manifolds. Let M be a C'°°-manifold. We study sheaves on M with
coefficient k where k is a field. They form an abelian category Sh(M), and we can consider
the unbounded derived category DSh(M) and bounded derived category D’Sh(M).

Suppose f : M — N is a continuous map. We recall some definitions. Let & € Sh(N).
The pull back f~'¢ is defined by

LU, f7'%) = lim T(V,9).
VO fU)

This is an exact functor, so we denote the derived functor again by f~'. Let .# € Sh(M).
The push forward f,.# is defined by

F(V,f*f) :F(fil(v)vy)'

This is only left exact, and the derived functor will be denoted by Rf.. Also recall that f,
is the left adjoint of f~!.
Besides the push forward, we also have the proper push forward f1.% defined by

L(V, i.F) = {s e D(f~Y(V),.Z)|supps compact}.

Again this is left exact, and the derived functor will be denoted by Rfi.

One intuitive understanding of Rf, and Rfi is that the push forward gives you stan-
dard cohomology, and the proper push forward gives you compactly supported cohomology.
When f : M — pt, it’s not hard to show

H*(Rf.ky) ~ H*(M:k), H*(Rfiky)~ H*(M;k).

Indeed as in cohomology theory we have change-of-variable formula for integration, here we
also have a base change formula for proper push-forward.

Proposition 1.1 (Base change formula). Suppose fog = go f'. Then g~'o Rfy ~
Rf{o(g)".

Proof. We only prove the proposition in the underived setting. First one can build a canon-
ical morphism fi o g, — g. o f{ (we leave it to the readers as an exercise). By adjunction
this will induce a morphism ¢! o fi — flo(d )~L. It is an isomorphism because

(97" 0 iF)e = (T ) gy =Te(f T (9(2)),.F)
~ Te((f) " (2), () F) = (F(d) ' F)a.
Since ¢’ : (f')"'(x) — f~1(g(x)) is a homeomorphism. O

A natural question is, is there a right adjoint functor of the proper push forward? Here
is the answer.

Definition 1.1. Let f : M — N be continuous. fi has finite cohomological dimensions.
Let 9 € DYSh(N). Then the complex of sheaves f'9 is defined by

RU(U, f'9) = RHom(/ Ky, %9),
where Ky — ky — 0 is a c-soft resolution.

The functor f' is the right adjoint of fi. Now we’re able to generalize Poincare duality
to Verdier duality on sheaves. This requires the notion of a dualizing sheaf (or a dualizing
complex).



SHEAF THEORY IN SYMPLECTIC GEOMETRY 3

Definition 1.2. Let f: M — N be continuous. Then the dualizing sheaf is
wyn = k.
In particular, write wy = wyy/pe- Let F € DPSh(M). Then the Verdier dual of .F is
Dy F = R om(F ,wyy).

The dual of F is
D\ F = R om(F k).

Let f : M — N be a submersion with fiber dimension [. Then the orientation sheaf is
defined by

OTM/N = H_le/N.
In fact, when N = pt and M is orientable, orp; = kps. In general,

L(U,ory) = Hom(H}(U; k), k).

Here are some basic properties of the proper pullback functor. We first remind the readers
of two other functors that will be used frequently in the future. For # € Sh(M), Z C M
a locally closed subset,

Fg = Z'Z,*’Lglf =7 ky, Fz(ﬁ) = Hom(kz,f).
There are corresponding derived functors in DSh(M).

Proposition 1.2. Let Z C M be a closed subset, U = M\Z and i : U — M. Then there
are exact triangles

1
RU2(F) = F = Rivi ' F 2 Rii\F = F = 7.

Proposition 1.3. Let f : M — N be a homeomorphism onto a locally closed subset f(M) C
N. Then

f o~ f o RTyp).
Proof. When f is an embedding we know that f~!f ~id.
RHom(Z, f'9) ~RHom(f.#,9) ~ RHom(/.F & k¢, 9)
~RHom(fi.Z, Rl ;i) (¥)) ~ RHom(Z, f 'Ry (9)).

Proposition 1.4. Let f : M — N and .%,%4 € D*Sh(N). Then
f'RAom(F,4) ~ RAom(f 7, f'9).
Proof. Consider any sheaf /# € D*Sh(M). Then
RAom( A, f' RA om(F,9)) ~RA om(fi. ', RA# om(F, D))
~RA om(fi @ F,9)
~RA om(fi(H " f1.F7),9)
~RAom(H, R om(f1F, ['D)).

The second last isomorphism is because one can choose a flat resolution of .% and when %
is flat

(A @ f71F), ~Le(f7H (), . © f71F) = De(f (@), 2 @ (Fa) 1)
~T.(f(2), #) @ Fp = (1 @ F),.
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The following proposition gives an alternative description of R om(%,¥) in terms of
the diagnol in M x M. The result will be used later.

Proposition 1.5. Let .%,% € D’Sh(M), and A C M x M the diagnol. Then
RAom(F,4) ~ RUA(RA om(p; " F,p5D))| a.
Proof. Denote by 6 : A — M x M the embedding. Then
5" RUA(RA om(p] L7, p59)) ~6' R om(p; %, p3 '4)
~RAom(5 p; L7, 6'phY)
~RAom(F,9).
O

1.2. Singular Support. We know that a sheaf .% is defined by its corresponding local
sections U — I'(U,.%#). When a sheaf is locally constant, this gives us a local system (which
is equivalent to a vector bundle with a flat connection). However, this is not always the
case.

Suppose we want to measure locally how a sheaf fails to be a constant sheaf, then a
natural way would be to measure where parallel transport fails to transport points on the
stalk. Therefore we need the following information: (1). a point; (2). a tangent vector
along which we are doing parallel transport. Unfortunately we don’t have the notion of
parallel transport on a general sheaf, so instead we have to look at local sections. Namely
we measure where local sections fail to extend.

Definition 1.3. Given M a manifold and .F € DYSh(M), the singular support is a set
SS(F) C T*M so that (z,§) € SS(F) if there is p € C°(M), ¢(z) = 0,dp(x) = £ so that

RT y-1((0,00)) (F )z # 0.

Proposition 1.6. (1). SS(F)NX = supp(F); (2). SS(F[1]) = SS(F);
(3). Let 1 — Fo — F3 E) be an exact triangle. Then for i # j # k,
SS(F;) C SS(F;) USS(Fy),
SS(Fi)\SS(F;) U SS(F;)\SS(F;) C SS(Fk,).

The definition of NOT being in the singular support is independent of the choice of the
function ¢ € C*>°(M). In fact this can be proved using the non-characteristic deformation
lemma, though not so obvious.

Basically, the lemma says that as long as we deform the level set ¢ ~!(0) without crossing
the singular support, the cohomology group won’t change, which tells us that indeed the
notion of singular support is detecting if sections of sheaves can propagate/extend in certain
directions.

Theorem 1.7 (Non-characteristic deformation lemma). Let {U;}er be a family of open
subsets in M, F € DP(M) with compact support, so that

(1) Ut == Us<t Us, Vi S R,‘

(2). For Zs = (;»s U\Us, RUpp\p,(F ) =0 as long as x € Z;\Uy.

Then for all t € R, we have

Rr( U Us,ﬁ> ~ RT (U, 7).
sER

The following lemma shows that the sheaf category D?(M) is invariant under homotopy
equivalence. The proof relies on the non-characteristic deformation lemma.
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Lemma 1.8. Let f: M — N be a homotopy equivalence. Then Rf.f~ % = Z.

Proof. Let h : M x [0,1] — M be a homotopy so that hy = id. First we prove that
RhL*hf1 =1id. Let p: M x [0,1] — M be the projection. Then
Rhi.oh;' = Rh.oRji.oj toh™, i=0,1.
It suffices to show that Rjg . o jo_1 = Rjio0 jl_l. Since p o j; = id, there exist natural
transformations
Rjiw o jit = Rjiw o Rp., i=0,1.
Showing this is an isomorphism, by adjunction, is equivalent to showing for a constant

sheaf # = My 1j, RI'([0,1], #) — F; is always an isomorphism. This follows from theorem
1.7. O

The following theorem, known as the microlocal cut-off lemma, is important when esti-
mating the singular support of a sheaf.

Definition 1.4. Let E be a vector space. s : Ex E — E, (v1,v2) — v1 +vy. Let F,9 €
DY(E). Then the convolution functor is

F «94 = Rs.(p]'.F @ p;'Y).

In the following theorem, by a conical subset v in a vector space E we mean a subset

that is invariant under scaling. For a conical subset v C FE, its polar set is
v ={v e EY|{u,v) > 0}.
Theorem 1.9 (Microlocal Cut-off Lemma). Let E be a vector space, v C E be a closed
cone and F € D*(E). Let
F' = Cone(ky x F — ko * .F).
Then SS(F')N(E x (v¥)°) =0, and F' ~ 0 iff
SS(F) C E x (v)°.

Note that Kashiwara-Schapira used the push-forward functor via (—v)-topology instead

of convolution with k., but the results are the same. In fact, one can prove that
RT'(U,ky % #) ~ RT'(U — ~, 7).
Proof of Theorem 1.9. Without loss of generality, we always assume that .% has compact
support. By corollary of non-characteristic deformation lemma we have
RT(U,k, % %) ~ RU(s Y (U), 71 'k, @ 75 *.F) ~ RT(s 1 (U) N (v x E), 7y \.F)
~ RI(mo(s Y (U) N (y x E)),.F) ~ RT(U — v, .7).

First assume that k, x # ~ ko x.#. Then for any ¢ ¢ v, choose p(z) = (z,&). Then

¢ ((=00,0)) —y = E.
RU(¢7}((~00,0)), ) = RU(¢™}((~00,0)) — 7, ) = RT(E, 7).

Let i : o= ((—00,0)) — E, then by taking derived global sections of the exact triangle

RT 10,5000 (F) = F = ivi 27 L,

one can get that RT' -1 4+00)) (%) = 0, which means SS(#) C E x ~".

Then assume that SS(#) C E x vY. We show that for any open ball U we have
an isomorphism RT(U — ~,.%) = RI(U,.#), which will show, since open balls form a
neighbourhood system on a manifold, that

kyx.F = ko *x 7.
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In fact we appeal to the non-characteristic deformation lemma 1.7. Choose U (t € R)
with smooth boundary so that (J;cg Us = U — 7, \ier Ut = U, and the outward conormal
directions of Uy is contained in EV\~". Then the condition on SS(.%) ensures that

RUp\p,(F )z =0, Vx € Z\Us.
Hence by non-characteristic deformation lemma, we know that
RU(U — v, 7) = RU(U, %),
which means .7’ ~ 0. 0O

Here are some examples of singular supports of sheaves.

Let U C M be an open submanifold with smooth boundary oU. Then SS(ky) =
(T M), SS(ki) = (T4, M)+, where 4 stands for the outward pointing normal vectors
and — stands for the inward pointing ones. We only check the first one here. Suppose U
is locally defined by a coordinate function ¢7 > 0. Then on the coordinate chart, write
U= ¢ '((0,+00)),

RPU(kU)O = R%OTTL(H&U, kU)O = RHome(Rn)(kﬁ, kU)
= RHom pb(gny (iviy k, ivyiy k) = Hi(U;k) = k[n].

Along all the other directions, it is easy to check that RT',-1(jg 100))(Kpy>0)0 = 0. Therefore
SS(ku) = (T M)-.

Let N C M be a closed submanifold. Then SS(ky) = Tx M. In fact suppose that locally
N is defined by coordinate functions @1 = ... = ¢ = 0. Then on the coordinate chart,
write N = 0 x R** Nt =RF x 0, U; = ¢; 1((0, +0)), V; = U; N N+,

RTg(kn)o = R om(kg, kn)o = RHom porny (kg k)
= RHom pygny (73! kyz, 7yt ko) = RHomp 1y (ki ko).
= RHompy NL)(iVi’!z%_l]k, ko) = RHom 1) (k. iy; iy-ko)
= RI(Nt kook) =k, 1<i<k.

Therefore T5M C SS(ky). On the other hand, let pp41, ..., ¢n coordinate functions on N.
On the coordinate chart,

This shows that in fact SS(ky) = THM.
Finally, let U = {(z,y)| — 2%/? < y < 232} c R%. Then

SS(ky) = {(z,y. & mlw = —(2¢/3n)°,y = (2¢/3n)*}.
In fact, set o+ (z,y) =y £ 3/2 when 2 > 0 and y when z < 0. Then
Ss(kwil([07+oo))) = {($, Y, )\ng:t(x, y))p\SOi(fUa y) = 07 A > 07 P+ > 0}

By proposition 1.6, we know that the result stated above is true. This is a standard local
model of a cusp for front projections of Legendrian knots.

1.3. Functorial Properties. In this section we study how the singular support changes
under functors between sheaves.

Proposition 1.10. Let f: M — N be a submersion, .F € D*(N). Then
SS(f'F) = faf (SS(7)).
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Proof. First we prove that
SS(f~1F) C fafr ' (SS(F)).

Choose a local chart so that locally M =R™, N = R¥ and f : M — N is the projection 7 :
(2’ 2") > o', Pick (z/,2";€,€") ¢ fa(f1(SS(F))). If £" # 0, then we let p(z) = (z”,£").
Since f~1.% is constant along v when (v, &) < 0.

Rrwzo(f_lf%\)x ~ (.
Thus (2/,2";¢,2i") ¢ SS(f~1F). If &’ = 0, then actually (2/,¢') ¢ SS(F). Let ¢(z) =
(', &'). Since
Loor>0(f ' F)e = Lpzo(F ),
(', 2", €,0) ¢ SS(f~1.7).
Then we show that
fafz1(SS(9)) € SS(f~'9).
This is because for any y € f~!(x), we have
RTy50(F ) = RTgog>0(f ' F)y,
which is essentially the chain rule. g

Definition 1.5. Let S C M be a subset. Then NS = T,M\Cy(M\S,S), N:S = (N,S)",
NS =U,epr NoS and N*S =, .,y N:S.

Theorem 1.11. (1). Leti: U — M be an open embedding.
(i). Assume that SS(F)NN*U? C M C T*M. Then

SS(Rii ' F) c SS(F) + N*U;
(ii). Assume that SS(F)NN*U C M C T*M. Then
SS(Rii~L.%) c SS(F) — N*U;

(2). Let Z C M be a closed subset.
(i). Assume that SS(F)NN*Z C M C T*M. Then

SS(RTz(%#)) C SS(#) — N*Z;
(ii). Assume that SS(F)NN*ZP C M C T*M. Then
SS(Zz)C SS(#)+ N*Z.
Proof. (1). After choosing a local chart, we mat assume that M is a vector space. (i). For
¢ (SS(F)N7n () + N:U, we show that (x,¢) ¢ SS(Ri.i~1.%). Now
(N;U — Rzof) N(=SS(F))c M CT*M.
Choose a conical neighbourhood v C T M of (N;U —Rx>¢€) that is disjoint from —SS(.%).
Now consider v C M. Choose a neighbourhood V of # € M such that V x vV NSS(F) C
M. Let Uy C U; C UyUU be invariant under ~"-translations. Then there are no differences
between sections on Uy and the ones on Uy,
(kyv * BT, (F))uy = 0.
Note that
v c{ve M|(v,&) <0}U{0}.
Hence U is invariant under «"-translation. Therefore
(kyv * R ap g (Risi™ 7))y, ~ Risi™ (ky x RTpp gy (F))uy = 0.

This completes the proof of (i). For (ii) the proof is basically the same.
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(2). Let U = M\Z and i : U — M be the embedding. The result follows from the exact

triangles
1 1
RU(F) = 7 - Rivi ' 7 Rii'7 > 7 7, 1
Thus we are through. O

Definition 1.6. Let f : M — N be a continuous map between manifolds, A C T*N be a
closed conical subset. f is non-characteristic for A (or A is non-characteristic for f) if

[f(A)NTyNCMcC ffT*N.

For F € D*(N), f is non-characteristic for .7 if it is for SS(F).

Theorem 1.12. Let .# € D*(N) and f: M — N be non-characteristic. Then
SS(f'F) C fafz (SS(F)).

Proof. We decompose the map f: M — N into a closed embedding id x f: M — M x N
and a submersion M x N — N. Theorem 1.10 has already dealt with the submersion case,
so it suffices to check the closed embedding case.

For closed embeddings Z — M, by induction on dimensions, we may assume that Z is
a hypersurface. In addition, we may assume that M\Z = Uy L U_, and the corresponding
embeddings are i+ : Ur — M. Then consider the exact sequence

Riyi'ZORi_i'\F - F > Tz 5.
Then by Theorem 1.11 we can tell that
SS(ZFz) C SS(F)+T,7M.
This completes the proof. O
Proposition 1.13. Let M, N be C®-manifolds, # € D*(M), and ¥ € D*’Sh(N). Then
SS(nyf F @ ny'9) C SS(F) x SS(9),
SS(R#om(myf F,7N'9)) C (—SS(F)) x SS(Y).
Definition 1.7. Let ACT*M,B C T*N. Then
Cu(A, B) = Crs,(mx Ny (A, —B) C Tre, (uxny T (M x N) = T*(M xn TN).
Letp: M xny TN — M be the projection. Then
F#(A, B) = pap; (Cu(A, B)) = T*M 1 C,u(A, B).
When M = N and f =id, then A}+B =id"(A,—B) C T*M.
Theorem 1.14. Let i : U — M be an open embedding, .F € D*(U). Then
SS(Ri..F) C SS(F)+N*U,
SS(Ri.7) C SS(F)+(—N*U).

The idea of the proof is the following. We want to show that .# is non-characteristic
for N*U. Then one can apply Theorem 1.11. However, this cannot be done because first
there is not even a pull-back functor here, and second directly showing non-characteristicity
seem to be hard. Therefore we approximate U by a sequence of subsets U; and prove non-
characteristicity for j; : Uy — M. In order to do that we need the following lemma.

Definition 1.8. Let {Ay,, pmn}tmn>0 be a projective system of abelian groups. It satisfies
Mittag-Leffler condition if {pmn(Xn)}tn>m is stationary for any m > 0.
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Lemma 1.15. Let .# € D*(M), {U,}n>0 be an increasing sequence of open subsets and
{Z,}n>0 a decreasing sequence of closed subsets. Set U = Unzo U,,7Z = mnzo .

(1). The natural map H%(U, F) — @nzo H;n (Un, F) is surjective;
(2). Assume that {HZl(Un,f)}nzo satisfies Mittag-Leffler condition, then H%(U, F)
— I'&ano H}, (Un, F) is an isomorphism.

Proof of Theorem 1.14. We only show the first assertion. Let (zg,&) ¢ SS(Z)+N*U, and

in fact assume that z¢ € supp(.#) N U, & # 0. This means (xg, &) ¢ SS(F). Since & ¢
N U, we may assume that for some closed cone v we have U+~ = U, Nj U C (yv¥)°U{0}

and & ¢ 7.
We choose vg € v° and define in a local chart

Hy ={z e R"|(z — x0,&) > —s}, Usy ={x € R"|z —tvg({x — xo, &) +s) € U}.
They satisfy the following conditions that (for 0 < ¢t < t)
UstNH, CUp NH, CU, | JUuNH,=UNH,.
>0

Now we claim that one can find a neighbourhood V' x W of (x¢, &) such that for Vy = VNHj,
s,t > 0 small,

SS(F)N(~N*Us)Nn (Vi) C M C T*M;
(SS(F)+ NUgy) N (Ve x W) = 0.
If either of the assertion fails, then one can choose sequences such that
Snytn — 0, T, = w0, ¢y € Ny Us, 1, \{0},

(Tn,&n) € SS(F), &n+ (o = an, én — &o
(¢ = 0 for the first condition, ¢ = 1 for the second). We define (yn,n,) by

Yn = Tn + tnUO(<xn - x0,§0> + Sn)a gn =M —tn <77n7'U0> 507
and set p, = ¢, + M. Then 1, € vV and

fO)gnannvpn S _{UO}va ‘Un| S C<TI7Z7U0>7 C‘pn| Z - <IOTL7UO> .

Therefore pn/|pn| = &o/|¢0l; (#n, Cn/lpnl) € SS(F), (Yns 1/ |pnl) € N*U. Hence (0, &0/|é0]) €
SS(Z)+N*U. A contradiction. This proves the assertions.
Fix s > 0 small. Let .%; = Rjs«(#|v,,). Then the non-characteristicity tells us that

SS(F) N (Vs x W) = 0.

Let Up C Uy be invariant under «/-translation for v C {&}Y U {0} and zo € U1\Uy C Hs.
Then

(k,y/ * RPU1\U0 (ﬁt)) =0, Vit > 0.
Now we apply Proposition 1.15 to deduce that (k. x RU'y )\, (#)) = 0. Hence (z9,%) ¢
SS(F). O

1.4. Microlocal Morse Theory. As we have seen in the non-characteristic deformation
lemma, the notion of singular support detects how sections of sheaves propagate/extend, if
a family of open subsets Uy (t € R) does not pass SS(%), then for s > t,

RT(U,, F) = RU(U,, F).

This may remind us of Morse theory, where if »~!([a,b]) does not contain critical points,
then one have
H* (™ ((—00,b]);k) = H* (¢~ ((—00,a]); k).
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Indeed, we can generalize Morse theory about (cohomology) of costant sheaves k to general
sheaves.

Lemma 1.16. For . € D*(R) such that SS(F)NT*[a,b] C T%y[a,b], there is an isomor-
phism -
RP((_OO7 b]v j\) l> RF((—OO, CL}, 32)

This lemma follows immediately from the non-characteristic deformation lemma.

Theorem 1.17. Let .F € DY(M) and ¢ € CY(M) a proper function such that for any
r € o ([a,b]), do(x) ¢ SS(.F). Then there is an isomorphism

R (¢~ ((—00,b]), F) = RL (0™ ((—00, a]), F).
Proof. Note that since ¢ is proper, we have
R (¢ ((—00,a]), #) =~ RT((~00,d], Rp..F).

The result follows from the singular support estimate SS(Ry+.%) C ¢rp; ' (SS(F)) which
is contained in the zero section. O

Theorem 1.18 (Morse Inequality). Let .# € DY(M) and ¢ € CY(M) be proper, and
supp(:F) N~ 1((—00,t]) is compact. Let A, = {(x,dp(z))|x € M}. Suppose that

A(p N Ss(y) - {($1,§1)7 ceey (xnagn)}
and Vi = RT > 42, (F )u,; 18 of finite dimension. Then RT'(M,.7) is of finite dimension,

and
Z( 1!~ dim HY (M, .7) Z ZdlmH]

<l 1<i<n j<lI
S (1 dim BI(M,.Z) = > Y (~1) dim H/ (V).
j 1<i<n j

Here z1,...,x, are the generalization of Morse critical points, and dim H’(V;) is the
generalization of Morse index.

Proof. Note that since ¢ is proper,
BT}t ooy (RpuF )y = RT (7 (£), RT y1 (t 400y (F)) = D BT 1t 400)) (F))as-
()=t
Therefore, again it suffices to work on R. We consider the exact triangle
RUy, 400y (F)t; = BRI ((—o00,ti], #) — RI((—00,t;), F) — .
By non-characteristic deformation lemma we have
RP((—OO, ti], 9) >~ RP((—OO, ti+1), 3—‘\)

Since supp(.%) N ¢~ ((—o0,]) is compact, we can prove by induction that RI'(R,.#) has
finite dimension. Now we use the exact triangle. This will give us the inequalities we
want. O

2. CONSTRUCTIBILITY

We will prove in Theorem 3.16 that the singular support of a sheaf is a coisotropic subset
in T*M. The simplest coisotropic subsets are Lagrangian subsets. We will study these
sheaves in this section. In fact, such sheaves can be viewed as stratified local systems,
whose singular support is contained in the conormal bundle of the stratification.
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2.1. Cohomological Constructibility. Before talking about singular supports and s-
tratifications, let’s first introduce the following notion of a cohomologically constructible
sheaf. Basically most abstract properties we need will follow from the cohomologically
constructible condition.

Definition 2.1. Let C be a category, and I be a filtrant category. Let F;(i € T) be an
inductive system in C. Then li—r>nieZFi is the functor

C? — Set, X — ligHomc(X,Fi).
1€L

Definition 2.2. A sheaf F € DY(M) is cohomologically constructible if

(1). lim RI(U,.Z) and &inU o ile (U, .#) are representable;

(2). h_r)n el RI‘(U F) = Fp and RT ;) (F) = lm BT, F);
(3). Fp and RU () (F) are perfect.
Proposition 2.1. Let .F € D?(M) be cohomologically constructible. Then
(1). D.Z is cohomologically constructible;
(2). % — DD.Z is an isomorphism;
(3). RU(;1(M,DF) = RHom(%,k) and (D), = RHom(RL (1, (M, #),k).

Proposition 2.2. Let F € D*(M) be cohomologically constructible. Then
D.F KRG ~ RA om(n{ \.F,m59),
FRY ~ RAom(n] " F ,n;'Y).
Proposition 2.3. Let .F,%9 € D*(M) be cohomologically constructible. Then
RA#Aom(F,9) ~ R#om(DF,D9)~D (DF @9).

2.2. Subanalytic Stratification. Now we define what a constructible sheaf is. Basically
it is a stratified local system. In order to state the definition, we should first explain what
kind of stratification we will be considering - it is the subanalytic stratification.

Definition 2.3. A subset Z C M is subanalytic at x € M if there exists an open neigh-

bourhood U of x, and compact manifolds in (i=1,2,1<j<N) and f; : sz — M analytic
functions such that

znu=un| UJ HONFEP)

1<j<N
Z s a subanalytic set if it is subanalytic at any point.

Lemma 2.4 (Curve selection lemma). Let Z C M be subanalytic and o € Z. Then there
exists an analytic path  : [0,1] — M so that x(0) = z¢ and x((0,1]) C Z.

Definition 2.4. (1). A partition M = | |;c; M; is called a subanalytic stratification if it is
locally finite, all M;’s are subanalytic subsets and for anyi,j € I, MiﬂMj #0iff M; C M;.

(2). A partition M = | |;c; M; is called a p-stratification if it is subanalytic and for any
i,j € I, M; C M;\M;, we have

(T]’\}Z,MJFTZ’\}J, M) N (M;) C Tjy M.

Theorem 2.5. Let M = J,c; M; be a locally finite subanalytic covering. Then there exists
a refinement M = | |, M}, being a p-stratification.
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Definition 2.5. Let .F € D*(M). .Z is weakly R-constructible if there exists a locally finite
covering M = (J;c; M; by subanalytic sets such that for any i € I,j € Z, H).F |y, is locally
constant. The full subcategory of weakly R-constructible sheaves is D]%_C(m wearM).

F is R-constructible if in addition for any x € M, F, is perfect. The full subcategory of
R-constructible sheaves is D% . (M).

R-con

The following theorem characterises the microlocal behaviour of a constructible sheaf. In
short, a constructible sheaf is a sheaf with singular support being a conical Lagrangian.

Theorem 2.6. Let .F € DY(M). Then the following are equivalent:
(1) F € D%—con,weak(M);
(2). SS(F) is contained in a closed subanalytic isotropic subset;

(8). SS(.F) is a closed conical Lagrangian subset.

Proposition 2.7. Let % € D*(M) and M = | |;c; M; be a stratification by subanalytic
sets. Then the following are equivalent:

(1). for alli € I,j € Z, HI.F |y, is locally constant;

(2). SS(F)  Lje iy M.

Now our goal is to show that the notion of R-constructibility implies cohomologically
constructibility we introduced in the previous section. First we need a simple lemma which
is essentially Sard theorem.

Lemma 2.8 (Microlocal Bertini-Sard theorem). Let ¢ € CY(M) be proper A C T*M be a
closed conical subanalytic isotropic set. Then S = {t € R|3x € M, p(z) = t,dp(x) € A} is
discrete.

Proposition 2.9. Let % € Db (M). Then .F is cohomologically constructible.

R-con

Proof. First we show representability and the isomorphisms

lig,  RU(U,F) 5 Z,, RU(y(F) 5 lim, _ RU(U, 7).

Choose a proper real analytic function ¢ : M — R". We show that there is a natural
isomorphism for ¢ > 0 small enough,

RI (¢~ (B(0)),.-#) = RT (¢~ 1(0), %),
RT,-1(0)(F) = RT (¢ (0), F).

Let A = SS(%) and apply the microlocal Bertini-Sard theorem, then these isomorphisms
hold by microlocal cut-off lemma.
Then it suffices to show that RI'(,,(M,.#) is perfect. In fact consider the exact triangle

R (o) (M, ) = RU(B(x), %) — RU(B.(z)\{z}, 7) 1> .

One can prove RI'(Bc(x)\{x},.#) =~ RI'(S,/2(7), #), but since the projection by the radius
function is proper, constructibility is preserved and hence RI'(S./2(x),.7) is perfect. On
the other hand, RT'(B¢(x),.7) ~ .%, is also perfect. Thus we are done. O

One can in fact find the generators of the category of constructible sheaves.

Theorem 2.10 (Nadler). Let T = {7, € I} be a subanalytic triangulation, D% (M) be the
derived category of T -constructible sheaves. Let Cr(M) be the full subcategory of ju ks,
Then D5-(M) is the triangulated envelope of Cr(M).
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Proof. Let i>p : T>;, — M be the inclusion of all simplices with dimension greater than or
equal to k, and j<i : T — M be the inclusion of all simplices with dimension less than k.
Let D%’—zk(M) be the subcategory of sheaves .7 ~ zzk*zg}ﬁf
It is easy to realize that D%H(M ) is generated by jo «k-,. Suppose we already know for
>k DbT>l (M) is generated by jq «kr,. Then we consider D%k (M). Note that we have the
following exact triangle -
. . 1
RFT<k+1 (9) - F — "2k+1,*@311g+1y —]> .

Since .# ~ zzk*z;}g? we know by the exact triangle

1
RT7_ (F) = F = ispaish?
that R['r_, (%) ~ 0. Now apply RI'r_, to the first exact triangle we know that
RPT<kRPT<k+1 (32) ~ 0.

However by the second exact triangle this means that RI'r_, , (%) is in Dg->k (M) and hence

must be supported on dimension k£ simplices. Therefore by induction Dg-(M ) is generated
by ja,*kﬂ'& . D

Similarly if one consider C;-(M) consisting of j, ks, the same result holds.

3. MICROLOCALIZATION

Denote by D4 (M) the full subcategory of D?(M) whose singular support is in A C T*M.
Consider A C T*M. The motivation of microlocalization is to focus on the behaviour of
sheaves along A. Therefore we enforce all the sheaves in Dg’ij* M\A (M) to be zero, which

means we consider the localization category
D*(M, A) = D*(M)/ D}y g ppya(M).

and phom(F,9) = Hompspp)(F,9).
Alternatively, one can avoid using localization of categories and explicitly define microlo-
calization and the functor phom.

3.1. Specialization. Let N C M be a submanifold. Consider the normal deformation My
of M along N, so that there is a projection p : My — M. p_Nl(M\N) = (M\N) x (R\{0}),
p Y (N) = TwM U N x R. There is also a projection ¢t : My — R so that tlp-1(vy = 0,
t\pq(M\N) is the canonical projection.

Locally, let {U;}icr be an open cover of M, ¢; : U; — R™ be coordinate systems so that
U;NN = o (0 x R"%). Define

Vi ={(z,t) € R" x R|(tz', 2") € ;(U;)},
and the transition functions g;; satisfy
(tgi;(x,1), g (2, 1)) = pj 0 ;' (ta', 2”).

The normal bundle T M is blown up to encode the information of normal directions to N.
t is a rescaling factor to shrink the distance from a point to NV, so that one doesn’t need to
worry about the influence on the normal direction coming from the distance factor.

Furthermore, we should make a remark here that in fact the normal deformation is given

by the real blowup, My = Blyxo(M x R)\BIyM. i
Write My = t~1((0, +00)), p+ : My the restriction of p : M — M. There is a diagram

TnM i> MN (i MN,—&-.
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l"
-

FIGURE 1. When M =R? N = {0}, V = {(r,0)|0 < 7/10} on the left and
open subsets U such that Cy(M\U) NV = () on the right.

Definition 3.1. Let S C M be locally closed. Then the Whitney normal cone along N is

On(S) =pi'(S)NTyM. Let S1,S> C M be locally closed. Then the Whitney normal cone
15 0(81,52) = CA(Sl X SQ)

Basically, Cy(S) is the limit points of p;'(S) in Ty M. When a point (z,t) € p3'(S)
approaches the normal bundle, this means under the projection (tx’,z”) € M approaches
N along the corresponding normal direction. One can see that the factor t shrinks the
distance between the point and N. The following proposition is elementary.

Proposition 3.1. Let x = (2/,2") be a local coordinate system on M such that N is defined
by &' = 0. Then (z,§) € Cn(S) iff there exists a sequence (x},,xl c,) in S X Ry such that

ny»n

(), 2y =z, cpal, — &

n»'n

Now we define what the specialization of a sheaf is. The idea is that, we want to detect the
behaviour of a sheaf after contracting everything to an infinitesimal normal neighbourhood
of N. Therefore we pull the sheaf back to the normal deformation along N and focus on
the behaviour on the normal bundle T M.

Definition 3.2. Let N ¢ M, .7 € D*(M). Then the specialization of .F along N is
UNTF = s_le*pllﬁ.
Theorem 3.2. Let V C TxM be an open conical subset. Then
H/(V,unF) = ling HI(U, 7).
U:Cn (M\U)NV=0

Let’s first look at an example (Figure 1) to see what this theorem says. Consider M = R?
N = {0}, V. = {(r,0)|0 < w/10}. Then Cny(M\U) NV = () means the points in M\U
approach V along a direction away from V', so M\U is away from V infinitesimally. In this
case, the theorem says the sections of vny.%# on V are direct limit of sections of .% on certain
neighbourhoods of V.

Proof of Theorem 3.2. Let U C M be an open subset such that Cy(M\U) NV = (. Note
that pjrl(U ) UV is a neighbourhood of V' (see Figure 2). There are natural morphisms

RU(U, ) = RL(p~'(U),p~'F) = RU(p~'(U) N My 1,p" ' F)
— RU(p,"(U) UV, Rj.j 'p~'.F) — RT(V,un.F).
Therefore one gets a canonical morphism

ling HY(U, F) — H (V,unZ).
U:Cn (M\U)NV =0
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FIGURE 2. Let M = R2 N = {0}. The left hand side is My, where the
red region is p~1(IV), the grey slice is a copy of M, and the black curves are
two components of p~!(z) ~ {z} x RX. Let U C M,V C Ty M be as in the
previous figure so that C(M\U) NV = . The right hand side shows p;'(U)
as the blue region and a cone V. C Ty M as the orange region. One can see
why p;!'(U) UV is a neighbourhood of V.

On the other hand, we know that

H)(Viun7) = lim H/ (W, Rj.j~'p~ ') = lim H) (W N My,p L %).
wov woVv

If the neighbourhoods W' so that pl;, Nin has connected fibers form a basis of V, then
we may assume that when taking the direct limit, ply, N always has contractible fibers.

By the non-characteristic deformation lemma, Rp,p~'.# = .#. Consequently
H' (W N My,p ' F) = H (p(W N My_y), Rpp L. Z) = H (p(W N My 1), F).
As all the subsets U such that Cx(M\U)NV = § are of the form p(W N My 4 ), we're done.

It suffices to check that the neighbourhoods W so that ply, Nin ot has contractible fibers

form a basis of V. Pick any neighbourhood Wy of V. We consider SMy = (My\(M x
R))/R.. By choosing a section on SMy, we can choose a connected component for each
fiber of Wo N (My\(M x R)). Let the union be Wj. W, is an open neighbourhood of
VN (TyM\M). To get an open neighbourhood of V| we just let W = V U W; U (W, N
t~1((-=00,0))). This completes the proof. O
Proposition 3.3. Let . € D*(M). Then there is an exact triangle

RUN(F)|y — F|x — RianZ 2

Proof. Consider the exact triangle

RFN(I/N?”N — Rﬂ'*l/Ng — Rﬁ'*l/Nﬂ ﬂ) .

It suffices to show that there are canonical isomorphisms

RI‘N(VNL@NN ~ RFN(L@NN, R?T*I/Nﬁ ~ cg;|N
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FIGURE 3. On the left is a constant sheaf supported on the interior of the
standard cusp (the grey region, boundary not included), and on the right is
its specialization along the origin (the red point).

IaRL

FIGURE 4. 1. On the left is the singular support of a constant sheaf sup-
ported on the interior of the standard cusp (the grey region, boundary not
included); 2. in the middle is the normal cone of its singular support, where
the blue color is representing the components in the base and the green col-
or is representing components in the fibers; 3. on the right is the singular
support of its specialization along the origin, where now green stands for
components in the base and blue stands for components in the fibers. The
blue components and the green components are corresponding to each other
by dualization.

Let ¢ : N — T M be the zero section. Then by the definition of specialization and the
previous theorem we have

Iy ~itsTinT g S i_ls_le*j_lﬂ_ly ~ vNF|N.
Since 7 : Ty M — N has contractible fiber, we know
UNT|N =~ i'vnF S Rrur NN F ~ Ry F.

This proves the first isomorphism. The second isomorphism is similar as Ry (%)|ny =~
iLZ. O

In addition, we can estimate the singular support of the specialization in terms of the
singular support of the original sheaf. An example is illustrated in Figure 3 and 4.
Proposition 3.4. Let % € D?(M). Then

SS(vnF) C CTX[M(SS(f)).

Proof. Fix a local chart U so that on that local chart M =R", N = 0 x R"F, Locally the
normal deformation is My = R" x R, where t : My — R; (2/,2”,t) — ¢, and p : My —
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FIGURE 5. SS(kg), SS(ko), SS(k(o,00)) and SS(kjg o). The grey line is the
zero section R C T*R.

R; (o', 2" t) — (ta’,2"). We have
SS(pllﬁ) ={(z,t; &, 7)|t > 0,tT — <x’,§’> =0, (t',2";t71¢ ¢y € SS(F)).
For any (z,z(; &), &) € SS(vmF), there exists (), 211, t; &0, &1, m) € SS(pL'F) so that
tn — 0, taTn — 0, (2, 20 &L E0) — (x(, 205 €0, €0)-
Since (tnal,, i n1§n, ") € SS(F), we know (by scaling) (tnz),, z: & t,E)) € SS(F).
Therefore (g, z; 5, &) € Crym(SS(F)). O

3.2. Microlocalization. For microlocalization, instead of working with normal bundles,
we work with conormal bundles. This means we will nee to pass from a vector bundle to
its dual vector bundle. The corresponding transformation on sheaves is call Fourier-Sato
transform.

Definition 3.3. Let m : E — M be a vector bundle and 7V : EV — M its dual bundle,
p1: EGOEY - E,pp: EQEY — EV. Let

D = {(z,u,v")| (u,v") < 0}.
Then the Fourier-Sato transform of F € D°(E) is
= Rpa)(py'Z)p

Let D' = {(z,u,v")| (u,v") > 0}. Then the inverse Fourier-Sato transform of 4 € D*(EY)
is 9V = Rp1,(ph¥) pr.

Let’s consider some examples. Let M = pt and F = EY = R. Then D = {(x,y) €
R?|zy < 0}. Let’s compute kY = Rpg}g(pl_lk)p = Rpo kp. For y # 0, its stalk is

(K")y = RLe(py " (), kp) = H([0, +00); k) = 0.
For y = 0, its stalk is
(K")o = RLe(py 1 (0), kp) = H:(R; k) = k[-1].

Therefore, k™ = ko[—1].

For the skyscraper sheaf kg, let’s also compute k) = Rpg’[(pflko)p = Rp21Kk{(z,y)jz=0}-
For y € R, its stalk is

(k/\)y - RFc(pgl(y)a k{(m,y)|x:0}) = H: (pt; k) =k

Therefore, ]ko =k.

Similarly, we can also get kyy . = kg0, and ]kz\o 00) = K(—oo,0/[—1]. Therefore, when

[0,00)
considering the singular support of these sheaves, in dimension 1, we can see that Fourier-

Sato transform is actually rotating the singular support by 90 degrees.
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Before stating any propositions, let’s recall the following notation. Let v C E be a cone.
Then
v ={ve EY[(u,v) >0,Vu e}

Lemma 3.5. Let v be a closed proper convexr cone containing the zero section. Then
(ky)" = Kyvyo.
Let v be an open convex cone. Then
(ky)" ~k_v @ orgv[—n].
Proof. We only prove the first isomorphism. In fact, for any y € EV,
((kw)/\)y = RFc(pQ_I(y)7k(7><EV)ﬁD) = RT:(p1(p5 ' (y) N D) N7,k).

When y ¢ (v¥)°, p1(py ' (y) N D) N~ is a closed proper cone, so

RTc(p1(p; ' (y) N D) N, k) ~ H (R%g:k) = 0.
When y € (vV0°, p1(py* (y) N D) Ny = 0. Hence

RT(p1(py " (y) N D) Ny, k) =~ Hi(pt; k) = k.
This shows (k)" 2 k(jvyo. O
Theorem 3.6. The Fourier-Sato transform induces an equivalence D*(E) — DY(EY). In

particular,
RHom(%,9) = RHom(F",9").

Proof. It suffices to show that the Fourier-Sato transformation gives an equivalence of cat-
egories. In fact we show that
F — FN

is an equivalence. For any conical open subset U C FE, by adjunction we have
H'(U,7"") = Hom(ky, Z"[j]) = Hom((ku)"", Z[j)).

Therefore, it suffices to check that ky — (ky)"V[n] is an equivalence. O
Proposition 3.7. Let v C EV be a closed proper cone containing the zero section. Then
RU(EY,.7") ~ RT((—y")°, F) @ wg/u,

where v = {x € E|{(z,y) > 0,y € v}.
Proof. The result follows from the fact that R (EY,.#) = RHom(ky, F). O
We estimate the singular support of Fourier-Sato transform in the following proposition.
Proposition 3.8. Let E be a vector space (vector bundle), F € D*(M). Then
SS(F") = SS(F).

Proof. Since Fourier-Sato transformation is an equivalence, it suffices to show that SS(.Z") C
SS(Z). Suppose (z,&) ¢ SS(F). We will show that (£, —z) & SS(F").
Without loss of generality, we assume that F is a vector space. First suppose

RTo(F) = 0.

Denote j : E\0 — E, j : (E\0) x EY — E x EY and §y : (E\0) x EY — EY. Then
Rj,j \F ~ F.

F" ~ Rpo \RUpr(p; ' Rjj ' .F) = Rpo RTpr(Rjuj oy ' F)
= Rps Rjij ' RTp/(p; ' F) = Rpa1j "RUp/(py L. 7).
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If (¢,—x) € SS(Z"), then by Proposition, there exists y € EY such that (y,&;0,—z) €
SS(RT pr(p; 7). Now since RTp/(p;'.F) = RA#om(kp/,p; ' .F), by Proposition there
exists 17 € T, EV such that

<y7§77770) € SS(leﬁ% (%fﬂ?v@ S SS(kD’)

Thus (y,n) € SS(F), © = Ay and £ = M. However, SS(F) is invariant under the R -
action (x;¢&) — (Az, A71¢). This shows a contradiction.
In general, if RT'o(.#) # 0, then we consider the exact triangle

RUo(F) —» F — Rjj— 7 I .

It suffices to show that (&, —z) ¢ SS(RTo(F)"). Write i : 0 — E. We have R[o(F)" ~
(ii~L.%)". Since 41i71.F is supported at 0, we know it is a skyscraper sheaf supported
at 0. Therefore (77~ 1.%)" is a constant sheaf on EV. This shows that as long as x # 0,
(§, —x) ¢ SS(RLo(F)").

Finally to resolve the issue that z = 0 or & = 0, we add an extra factor kryo € D?(R?).
Consider

F Bkgrxo = 15" F ® 723 krxo-

Then apply the previous argument. Since SS(krxo) = {(z,0;0,n)|z,n € R}, we are
through. 0

Now we are able to define microlocalization in terms of the Fourier-Sato transform of the
specialization.

Definition 3.4. Let N ¢ M, . € D*(M). The microlocalization along N is unF =
vy F"N € DY(THM).

The following theorems follow from the properties of specialization and Fourier-Sato
transform.

Theorem 3.9. Let V C Ty M be an open conical subset, F € D*(M). Then
H(V,un F) = ling o}, U, ).
U:UNN=n(V); Z:Cn(Z)CVV
Proposition 3.10. Let .7 € D*(M). Then there is an exact triangle

FIn ®wyns — RON(F)|y = Ritupn F o

Proof. Consider the following exact triangle

RUNn(unF) = RmiunF — RiunF ﬂ) .

We prove that there are natural isomorphisms RI'y(un.%#) ~ Z |y ® WN/M> BN F =~
RUN(F)|N- 0

Proposition 3.11. Let . € D*(M). Then
SS(unF) C On(SS(F)).

3.3. The Functor phom. In this subsection we define the functor phom by microlocaliza-
tion along the diagonal.

Definition 3.5. Let § : T*M — TX(M x M) be the isomorphism (z,§) — (z,z,§, —=§).
Then for F,4 € D*(M),

phom(F,9) = § L uaRA om(p; L 7, ).
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Proposition 3.12. Let E be a vector space (vector bundle), F,9 € D*(E). Let (x,£) €
T*E. Then
Hjuhom(ﬂ,g)(m’g) = lim HY(RT(U, R# om(ky * Fi7,9))).
U:welU;yC({€}Y)°u{0}
Proof. Let v C E be a proper closed cone. We can define
Z,={(x,2') € EX E|lz — 2’ € ~}.
Then Ca(Zy) C {£}V. Hence as the open subsets U x U give a neighbourhood system of
(x,z), by theorem 3.9,
HI phom(F,9) (p.6) = lim HI(RTy (U x U,R#om(p; 7, p\9)))
UsweU; yC({€3Y)°u{0}
= limg HI(RU(U x X, R#om((p3 " Fv)z,,119)))
U:reU;yC({€}Y)°u{0}
= lim H’(RT(U, R,%”om(Rpl,y((pglﬁU)Zv),g))).
UszeU;yC({€}Y)°u{0}
Now it suffices to show that Rp1,!((p271fU)Zw) ~kyx Z.
Write p1 o = p12|z,. For any 7 € DY(E), we have a canonical morphism

ky x F — ky % (Rp2,.Py ' F) — ky x (Rp1 4Py F),

where the last morphism is given by the restriction k, * Rpa » — ky * Rp1 4 from ]31_1(U) —
Dy 1(U ) for any v-invariant open subset U. We show that this gives an isomorphism. Note
that ﬁlﬁgl(K) =K —, and Py : ]52_1([() — K — ~ has proper contractible fiber if K is a
closed ball. Thus by the noncharacteristic deformation lemma

HRprupy Fo = lim HY (K, Rp1py F) = i H (py 'K, py ' )

K:zeK K:zxeK
~ lim H/(K —7,7) = H (ky* F),.
K:zeK
This completes the proof. O

Proposition 3.13. (1). If f : M — N is a submersion, then
Rfayfr tphom(F,9) ~ phom(f .7, f~'9 ® Wn/m) = phom(f~ 1.7 ®wN/M,f!g);
(2). If f: M — N is a closed embedding, then
Rfm!fd_luhom(ﬁ,g) ~ phom(Rf«.7,Rfi¥) ~ phom(Rfi.F, Rf.¥Y).

Proposition 3.14 (Sato’s exact triangle). Let .#,% € D*(M). Suppose F is cohomologi-
cally constructible. Then there is an exact triangle

D'Z @9 — R#om(F,9) — Ric.phom(F,9) 1,

Proof. By Proposition 1.5 we know that RFAR%”om(pl_ly,p!Q%) ~ RAom(F,9). On
the other hand, since py : M x M — M is a submersion

RAom(p; ' T, pyD)|a @ wapnrsm 2RAom(py T, 03 'Y @ wirsnin)|a @ waxm
:R%om(pflf,pglg)m.

When % is cohomologically constructible, we have R57 om(pl_lﬁ Dy lg A ~ (pl_lDl F ®
pglg)m ~ D' ®%. This completes the proof. O

The following theorem follows from the singular support estimate of microlocalizations.
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Theorem 3.15. Let F,% € D*(M). Then
SS(phom(F,%9)) C C(SS(.F),S55(%)).

Finally, we are able to prove the involutivity theorem for singular supports. Here being
involutive just means being coisotropic via the standard symplectic structure on T%M.
Before stating the theorem, we first give a definition of being coisotropic for a possibly
singular subvariety.

Definition 3.6. Let S C T*M. S is coisotropic at p € S if for any v € T;(T*M) such
that the normal cone Cp(S,S) C kerv C T,(T*M), v € Cy(S).

Note that when S is smooth near p, then this condition is just saying for any v such that
T,S C kerv, v € T,S. This coincides with our usual definition of being coisotropic.

Theorem 3.16. Let .F € D*(M). Then SS(F) is coisotropic.
Proof. Let S = SS(#), p€ S and v € T,;(T"M) such that Cp(S,S) C kerv. Suppose
v & Cp(S):

Then one can find a closed subset Z C T*M such that S C Z and (v,\) < 0 for any
A € N;Z\{0}. In fact by the assumption there is an open cone y with vertex at p containing
v such that yNS = 0. We can let S = T*M\~.

On the other hand, one should notice that since Cy(S,S) C kerv, SS(phom(ZF,.%)) N
T;(T*M) C Cp(S,S) C kerv. Hence

SS(uhom(F,.F)) NN, Z C {0}.

This tells us that
RT z(phom(#,.%)), ~ 0.
However, since supp(phom(.%,.F)) C S, we have phom(%,.%), = Rl z(phom(F, F)), ~

0,ie. p ¢ SS(F). A contradiction. O
3.4. Localization of D?(M). As we’ve said at the beginning, we define the localization of
D*(M) along D?\/[UT*M\A(M) to be D*(M;A). This means under the natural functor

all sheaves whose singular supports are away from A is mapped to zero.
As we have mentioned before, it is a general phenomenon that taking localization is the
same as taking direct limit. In this case, we have

Hompyapp)(F,9) = lim Hompopy(F',9) = lim Homps oy (F,9").
F'=F on A Y9 on A

Now we study its relation with the functor phom. Recall that Hompsyp(F,9) =
HO(T*M, uhom(.F,%)). We have a canonical morphism

Hompyprp)(F,9) — HY(T* M, phom(F,9)).
Theorem 3.17. Let p € T*M, #,9 € D*(M). Then
Hompy(yrp) (F,9) ~ H(uhom(F,9)),.
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Proof. Write p = (z,£) € T*M. Consider a local Euclidean chart, by proposition 3.12 we
have

HOpuhom(F ,9) (. ¢) = ling H(RT(U, R+ om(k, x Fi7,9)))
UszeUs v ({€}Y)°U{0}
= lim Hom((ky x Zu)u,9))).

U:zelU;yC({€1Y)°u{0}

The canonical morphism (k, * %)y — % is an isomorphism at (x,&). Therefore the mor-
phism Hom po(pr.)(F,9) — HO(phom(F,9)), is injective. For any s € H(phom(F,9)),,
there exists U and v, 5§ € Hom((ky « #y)u,¥))) that represents s. This shows that the
sequence (ky x #y )y is a final sequence. Hence Hompu(pry) (F,9) — HO(phom(Z,9)),
is surjective. O

Here we study more carefully the localized category D®(M,p) and see if we can always
choose a representative in Db(M ) with good properties. The following proposition can be
generalized to more general conical subsets by contact transformations later on.

Proposition 3.18. Let j : N — M be a closed embedding. Letp € TixM and .F € D*(M).
(1). If SS(F) C n1(N) in a neighbourhood of p, then there exists 9 € D*(N) so that
F ~ Rj.9 in D°(M,p);
(2). If SS(F) C T} M in a neighbourhood of p, then there exists L € D*(Mod(k)) so
that F ~ Ly in D*(M, p);

Proof. (1). By induction on the dimension of N, we may assume that N is a hypersurface
defined by ¢ = 0. We have p(z) = 0. Assume that dp(z) = . Let Uy = o 1(Ry) and
i+ : Ux — M. Then we know by Theorem 1.14 that

SS(Ri_ i~ 'F) C SS(i_*F)FN*(R").

Hence as SS(i_'.%) is disjoint from N, we know that (z,¢) ¢ SS(Ri_.i~'.#). By the
exact triangle

RUy (F)—» 7 - Ri_,i~'7 1,

RI'g, (F) — .Z is an isomorphism at p. Now we may assume that supp(.#) C U,. On the

other hand, we also know p ¢ SS(Ri+7*i11ﬁ). Hence .# — Rj,j L% is an isomorphism
at p. We can let 4 = j~ 1.7,

(2). We have SS(¢) C N in a neighbourhood of p. Hence ¥ = j~1.% ~ Ly at p by the
non-characteristic deformation lemma and the fact that

SS(VF) = juj= (SS(F)) C N C T*N,

since j : N — M has proper contractible fibers. U

4. SIMPLE SHEAVES

4.1. Contact Transformations. Let U,V are open subsets in T*M,T*N. Then for A C
UxVP ifm : A — U and ma : A — V are diffeomorphisms, and A is a Lagrangian
submanifold, then

X = (" [a) o (mla): V= U

is called a contact transformation. In particular, note that a symplectomorphism U = V
defines a contact transformation.
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Theorem 4.1. Let x : U — V be a contact transformation. Then for any x € X,y € Y,
there exists neighbourhoods M', N' of w(x),n(y), neighbourhoods U', V' of x,y satisfying
Ucr*MnU, VcT*NNYV,
so that x : U — V' is also a contact transformation, there exists ® : D*(M';U") =
DY(N"; V"), and
Xxpthom(F,9) ~ phom(®(.F), (Y)).

4.2. Pure and Simple Sheaves. When analyzing the microlocal behaviour of the sheaf
category, the simplest objects we would like to work with is those who are microlocally
supported in a single degree, so that we will be under the classical setting instead of the
original derived setting. Roughly speaking those are what we call pure sheaves. If in
addition, the sheaf has rank one, then it is called a simple sheaf.

Our goal is to make it clear what it means by microlocally supported in a single degree
or microlocally rank one.

Definition 4.1. Let A C T*M\M be a conical subset. D?A)(M) is the full subcategory
of D*(M) in which for any F there is a neighbourhood U of A in T*M\M such that
(SS(F)\M)NU C A.

The reason we want to consider this category is basically because of proposition 3.18.
Basically after localization the sheaves in D?A)(M ) behave well and have good representa-
tives.

Let A C T*M be a conical Lagrangian, ¢ : M — R a smooth function. We say ¢ is
transverse to A if A A, = {(x,dy(z))|x € M}. Let 7, be the Maslov potential.

Proposition 4.2. Let A = T\M be a conical Lagrangian, ¢o1 be transverse to A at
p=(z,§) and F € DI()A)(M). Then
(BT 207 )z = (RTpy>07 ) [(T0 (P) — T (1)) /2]-

Proof. Without loss of generality, we assume that in a local chart NV is defined by z; = ... =
x = 0. The tangent space of A, is

TyA, = {(;p,g))gj = i@iajgp(:r)xi}.
i=1

Since TpA,, is transverse to T,A = {(z,&)|z1 = ... = 2 = {1 = ... = & = 0}, we know
(0;05¢(2))k+1<i j<n is non-degenerate. By Morse lemma, one may assume that

n
oln = Z aja:jz, Aot 1y ooey Qo] < 0y Qgig1y ey an > 0.
j=k+1
The corresponding Maslov potential at p is 7,(p) = —sgn(D?p|n) = 2] + k — n. Therefore
we have
(RUp>07 )a[7o(p)/2] = (RUp L )oll + (k — 1) /2] = L[(k —n)/2]
which is independent of the choice of ¢. 0

Proposition 4.3. Let pg € T*Mo,p1 € T*My, and x : Uy = U is a contact trans-
formation between neighbourhoods of py and p1. Suppose ¢q, 1 are smooth functions so
that po € Ay, p1 € Ay, and X(T;,l(O)MO) = T;,l(O)Ml. Then for any Lagrangian plane
0 1
Il CT(T*M),
RLpy>0(F )ag = BTy >0(XsF )y [(Tor (1) — 7 (1)) /2 4+ (0 — 1) /2
+ 7(Tpo T Mo, L, x (T, Tk M1)) /2]

Po+xo
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Definition 4.2. Let A C T*M be a conical Lagrangian. F € D?A)(M) is called a pure

sheaf if for some p = (x,&) € A, (RL'y,>0% )z is concentrated in a single degree. It is called
a simple sheaf if (RT 4, >0.% ), is rank one.

The following proposition explains what is the relationship between pure/simple sheaves
and microlocalization. It tells us that the condition in the definition is indeed a microlocal
condition. The propositions can be applied to general conical Lagrangians using contact
transformations.

Proposition 4.4. Let N C M be a submanifold, A = TN M and F,9 € D?A)(M). For
p=(x,8) €A, p: M — R such that p(x) =0,dp(z) =&,

phom(%#,9), = RHom(RT ,>0(F)e, RT¢>0(9)2)-

Proof. By proposition 3.18, one only needs to consider the case when # ~ Ky,¥ ~ Ly at
p. Then on the left hand side

phom(F,9), = phom(Kn,Ly), = RHom(K,L).
On the right hand side, if £ = dim NV, then
RHom(RI y>0(F)p, RU'y>0(9)p) = RHom(K, L).
Therefore we are done. O

Proposition 4.5. Let A =T\ M. F € D?A) (M) is pure iff phom(.F, F)|a is concentrated
in degree zero; it is simple iff phom (%, F)|x ~kx.
Proof. Again pick K,L € D(Mod(k)) so that Ky ~ #,Ly ~ % at p € A. Then

phom(F,%9), = RHom(K, L) and the previous proposition tells us that it does not de-
pend on p. Then the result follows from linear algebra. O

4.3. Derived Category psha. The functor A — D°(M, A) defines a presheaf of categories
whose stalk is D°(M,p) (where morphisms are given by the stalk of phom). Now we
illustrate why simple sheaves play an important role in microlocal sheaf theory. Basically
the reason is that a simple sheaf gives a framing that identifies the sheafification of categories
with derived local systems.

Definition 4.3. Let A C T*M be a conical subset. The presheaf of categories (prestack)
pshy s

Ao — D°(M,Ag), Ao C A.
The sheafification is ushy .

Theorem 4.6. Let A C T*M be a closed conical Lagrangian. Suppose F € DE’A)(M) s a

simple sheaf. Then there is an equivalence of categories
psha(A) = DPLoc(A); 4 — phom(Z,9)|x.
By discussions in the previous subsection, it suffices to show the following;:

Proposition 4.7. Let A C T*M be a closed conical Lagrangian and p = (z,£) € A. Then
there exists a meighbourhood Ag C A of p such that
(1). there exists F € D?AO)(M) that is simple along Ao;

(2). for any 9 € D?AO)(M) there exists a neighbourhood U of Ag such that F @ Ly = 4
in D*(M,U), where L = phom(%,9),.



SHEAF THEORY IN SYMPLECTIC GEOMETRY 25

Proof. Without loss of generality, we may assume that A = T ;\}’JFM where N C M is a
hypersurface. In a local coordinate chart, A = {(z,&) € T*R"|z; = 0,&§ > 0, = ... =
&, =0}, N =0 xR" 1. Then we can define the simple sheaf

y — k[O,+oo)><R”_l'

For any ¢ € D?A)(M), there exists K € D?(Mod(k)) such that Y ~10,.,0 = K. We have a
long exact sequence

(1]
91,0,..0) = Y(=1,0,...00 = Bl 400)xrn-1(¥)0,0,...0) — -

Therefore if L = RI'|g 4o0)xrn-1(9)(0,0....,0) then in DP(M, A) since Kgn ~ 0 we have
G =~ Cone(Ljg yoo)xrr-1[—1] = Kgrn) = Ljg {o0)xrr—1-

This completes the proof of the proposition. O

5. QUANTIZATION OF HAMILTONIAN ISOTOPIES

We’ve already seen that singular supports of sheaves are coisotropic subsets, which nat-
urally arise as objects in symplectic geometry. In this section we show that indeed the
category of sheaves with given singular support D?\(M ) is an invariant of A, in other words
they are invariant under Hamiltonian isotopy.

Here since we don’t care about the zero section, we use the following conventions through-

out the section: T*M = T*M\M, SS(F) = SS(F)\M, DY(M) = D4 (M) and
DY(M;A) = Db(M)/D?T*M\A)UM(M). Now we introduce the main theorem in this sec-
tion.
Theorem 5.1 (Guillermou-Kashiwara-Schapira). Let ¢, (t € I) be a homogeneous Hamil-
tonian isotopy of T*M such that wo = id, and A, (t € I) be the graph of ¢y (t € I) in
T*(M x M xI). Then up to isomorphism, there exists a unique sheaf # € D"(M x M x I)
such that

(1). SS(#) C A;

(2). Hlio = Ka;

Let # 4 = (a xid) 'R om(H ,wy Rky Wkp) (where a(x,y) = (y,z)) and H# o L =
Rz u(mig H @ moy L). Then A in addition satisfies

(8). w12 : supp(#) — M x I are proper;

(4). Ao H_y ~ H 4o K ~Kkn;

(5). If wi|lv = idy, then %|(U><MUM><U)><I = k(Aﬁ(UxMUMxU))XI-

Note that in particular (4) implies that
H; : D*(M) — D™ (M)
is an equivalence of categories.

5.1. Uniqueness. We first show uniqueness of . Let’s write

B = {(z,y,t)|({(z,9)} x [0,4]) N &(A) # 0}.
We will show that for a sheaf ¢ satisfying (1) and (2), it will satisfy (3)-(5) and is unique.

Proof of Uniqueness. First we prove (3). In fact we show that supp(#") C B. Otherwise

suppose for (z,y,t) ¢ B, there is a neighbourhood (U x V x J)N7(A) = 0. Then & |yxyxJ

is constant. Note that by definition of B, 0 € J. Since . |i—o = ka, (x,y) ¢ A. This shows

that # |yxvx.s = 0. Now the claim follows from the fact that m; 2 : B — M x I are proper.
Next we prove (4). It suffices to show that

H o = R7r13,*(7rf21<%/t &® 772731%71‘/) ~ KkAxr.
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We estimate the singular support of .# oy # 1. In fact, SS(#) C A, so SS(# ") C a(A)
where a(z,&,y,n,t,7) = (y,—n, x, =, t, —7). This tells us that

SS(H o # V) CT*(M x M) x 1.

Hence # o; # 1 is constant along I, which means (% o Ji/*l]t) =ka.
Then we show (5). This is because AN (UXx MUM xU)xI = (AN(UxMUM xU))xI,
which tells us that

SS(F)CcT*(UxMUMxU) xI,

which is to say J|(x mumxv)x {1y = ka-
Finally we show uniqueness up to isomorphisms. Suppose one can find %, %] satisfying
(1) and (2), then there is a unique isomorphism

UKy —

so that iali/) :ka — ka is the identity. Let & = J#yor Ji/fl. By the same argument as we
prove (4) we know that SS(%#) C T*(M x M) x I, so £ ~kaxy.

Ho ~ L o H ~ .
This completes the proof. O

5.2. Existence. In this section we show that there exists a sheaf # € D*(M x M x I)
that satisfies (1) and (2). This will prove our theorem.

The issue is that essentially the only sheaf quantization we are only able to construct is
the constant sheaf on a submanifold N C M. When A = T\ M is a conormal bundle of a
submanifold, we may define J# = k. Unfortunately this is not always the case. However
this is also not that complicated, since we know the front projection of a conical Lagrangian
(or a Legendrian) is generically a hypersurface. Suppose the hypersurface is separating M
as U UU_. Then one may be able to work with the sheaf k.

The question is how do we deform. The following lemma gives a way, which is essen-
tially to deform by the geodesic flow. Intuitively, when you run the geodesic flow, any
point (corresponding to a cotangent fiber in the cotangent bundle) will expand to a circle
(corresponding to its inward conormal).

Lemma 5.2. Let Q be a neighbourhood of A C M x M, f € C*°(M) be such that

(a). fla=0;

(b). f(z,y) >0 for (z,y) € NA;

(¢). D;D;f(x,x) is positive definite for (z,z) € A.

Then for a relatively compact subset U C M, there exists eg > 0 and Qg C M x M such
that

(1). ACQyCcQN(M xU);

(2). For Ze, = {(z,y) € Ql|f(z,y) < e}, m2: Z¢y — U is proper;

(8). Fory € U,e € [0,¢], {z € M|(z,y) € Qo, f(z,y) < e} ~R";

(4) Dxf(.’E,y)?éO,Dyf(iC,y)#OfOT"’L‘,yEQ[)\A, .

(5). Let T5Z507_Qg be the inward conormal bundle, mo : T52607_Q(] = T*U and m :

ngso Qo = T*M is an open embedding.
Let & =kz, € DW(M x U). Then SS(Z) C TgZEO,fQO and L 1o ¥ ~ka,.

Proof. Condition (1)-(5) are easy to be satisfied. It suffices to check the last assertions.
SS(Z) C Ty Zeo,—QO is essentially by definition. In addition,

SS(L o) CcTx, (U xU).
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Note that because .Z is simple, there is a canonical morphism £~ o ¥ — ka, which is
an isomorphism along TX (U x U). Thus Cone(ZL 1o % — ka,) is a local system. In
addition, (write Z = Z,)

SHL T 0 L) =~ Ry (L @ R om( L kprxy) @ Tokyr)
~ R7T27!(kz RKkzo ® W!QkU) ~ kg7

since the fiber of m : Z° — U is R™. Hence 6 (¥ ! o .¥) = ka,, which means
5 Cone(L 1o ¥ — ka,) = 0. Since it is locally constant, we can conclude that it
is 0. g

Now we try to illustrate why in the case when the front projection of A is a hypersurface,
it is easier to extend the sheaf by the Hamiltonian isotopy. In fact we are just extending
ZCMxMtoZ CMxDMx(—ece).

Lemma 5.3. Let Z C M x M be an open subset with smooth boundary. A C T*(M x M xI)
be a closed conical Lagrangian and Ay = Ao T I. We assume that

(1). Aly=o = SS(kz);

(2). ANT*((M x M)\K) x I) = (Ao\K) x I;

(8). A — T*(M x M) x I is a closed embedding.

Then there exists € > 0 and an closed subset Z C M x M x (—¢,€) such that

(1). ZN (M x M x {0}) = Z;

(2). A= SS(kz).

Proof of existence. Assume that o, (t € I) is compactly supported on N. Choose a relative
compact open subset N C U C M, and apply Proposition 5.2. Then .Z = kz., € DY(M x

U), SS(Z) C Tjz, (M x U) and Lo ¥ =kp,. Write
A=Tj, (M xU)oA.

Now we apply Lemma 5.3 to £ =kz_ , and deduce that there exists Z C M xUx (—¢e),
L= k; such that

(1). Do = 2;

(2). SS(E) © (A x1 (—e,6);

(3). T : M x U x (—€,€) = U x (—¢,€) is proper on supp(.Z).

We define the sheaf quantization

H =L Lop L e DVU XU x (—¢6)).

Then by the proof in the uniqueness part, |« )\ (Nx N))x(—e,e) = ]kAU\NX(_e’E), S0 it can
be extended to # € D(M x M x (—¢,¢)).

Now we can glue the sheaves on M x M x (t;,t;11) as when we solve ordinary differential
equations. Suppose J is the maximal interval where % can be defined, then since it has to
be both open and closed, we are done.

In general, if ¢; (t € I) is not compactly supported, we just using an exhausting se-
quence of compact subsets { N, },>0 of M and cut-off the Hamiltonian isotopy outside N,.
Inductively this defines a sheaf quantization globally. OJ

5.3. Topological Applications. First of all we conclude that the sheaf category with
given singular support in indeed a Legendrian invariant.
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Corollary 5.4. Let ¢ (t € I) be a homogeneous Hamiltonian isotopy of T*M such that
wo = id, and Ay (t € I) be the graph of ¢y (t € I) in T*(M x M x I). Suppose So C T*M
is a conical Lagrangian, S = Aoy Sy and Sy = Ay o Sg. Then

ir': DY(M x I) — D% (M)
is an equivalence.

Next we summarize some results on non-displaceability problems in the cotangent bundle.
We start with the homogeneous case.

Proposition 5.5. Let ¢, (t € I) be a Hamiltonian isotopy on T*M, f € C*°(M) be such
that df (z) # 0, and Fy € D*(M) be with compact support. Assume that RT(M,.%y) # 0.
Then ¢;(SS(F)) N Ap # 0. Let Sy = SS(Fy) € T*M be a conical Lagrangian. Assume
F is simple, Ay th ¢(So) and the intersection is finite. Then

o1(So) NV Af| =)~ dim HI (M, Z).
JEZ
Proof. Let .F = ® (%)) and .F; = @4, (Fy). Then SS(F) C ¢i(SS(F)). The first

result follows from the microlocal Morse lemma.
Note that when f is simple, at (2o, &) € @¢(S;) N Ay,

Z dim H](er(I)Zf(IO) (ﬁ})x()) =1.
JEZ
Let :(So) N Ay = {(x;,&)|i € I}. This tells us that
lor(So) VAfl = dim HI(RT ()5 f(00) (F )z, )-
icl jez
Now the proposition follows from the microlocal Morse inequality. OJ

In order to discuss non-homogeneous problems, we lift 7*M to T*(M x R) and modify
the non-homogeneous problem to a homogeneous problem.

Theorem 5.6 (Floer). Let ¢, (t € I) be a (not necessarily homogeneous) Hamiltonian
isotopy on T*M and there exists K C T*M such that @¢|p«yp i = id. Then o (M)NM # (),
and when @ (M) h M,

n
loe(M) N M| > dim H' (M; kyy).
i=0
Proof. Lift ¢, (t € I) to a homogeneous Hamiltonian isotopy on T%(M x R). If ¢, is defined
by Hy, then write
p:T*M x T*R — T*M; (z,£,s,0) — (x,£/0)

and let dH; = op*dH; + (Hy o p)do.

Let f = s, Zo = kyy € DY(M x R) and apply the previous proposition, we get the
estimate for @(Ty,(M x R)) N Ay. Now let ¥y = {(0p¢(x,0),0)|lx € M,0 € R*}. We first
of all have

5,0 (M x {1}) = ¢ (M) 0 M.
Next note that cﬁt(T]’\%(MxR)) = %y under the map p : T*M xT*R — T*M xR*; (z,&,s,0)
— (z,&,0) because

Gu(Tr (M x R)) = {(0¢(x,0),u(z,0,t),0)|z € M,o € R*}
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where u is the function such that
Pi(x,€,5,0) = (., s +ulx,§/o,t),0), @u(x,§/0) = (/. /o).
On the other hand we know that p: Ay = M x {1}. Therefore
Pu(Th (M x R) N Ay =~ TN (M x {1}),
which finishes the proof of the theorem. O

6. QUANTIZATION OF LAGRANGIAN SUBMANIFOLDS

We can use microlocal sheaf theory to study the geometry of Lagrangian submanifolds.
However, sheaf theory can only detect conical Lagrangians in cotangent bundles, or equiv-
alently, Legendrians in unit cotangent bundles. Therefore we lift a Lagrangian L C T*M
to a Legendrian in T:’;S(M x R). For such a lifting to exist, we require that L is exact,

ie. )\std|L = de.
Definition 6.1. Let L C T*M be an exact Lagrangian such that Agqlr, = dfp. Then the
Legendrian lift of L is
L={(z,&t,+o0)l(z,6) € L, t = fu(x,6)} € TS5 (M x R).
The conification of L is
C(L) ={(z,&t,7)|T € (0,+00), (z,§/7) € L, t = fr(x,&/7)} CTT750(M x R).

Here since we don’t care about the zero section, we use the following conventions through-
out the section: T*M = T*M\M, SS(F) = SS(F)\M, DY(M) = D4 ,;(M) and
DY(M;A) = Db(M)/D?T*M\A)UM(M). Now we introduce the main theorem in this sec-

tion.

Theorem 6.1 (Guillermou). Let A C T*(M x R) be a conification of a compact embedded
exact Lagrangian submanifold L C T*M. Then there exists a sheaf F € D?\(M x R) such
that SS(.7) = A.

Throughout this section, we will also assume that all categories are homotopy categories
with dg enhancements (instead of simply triangulated categories) and all sheaves of cate-
gories are defined in the dg sense. This is because the presheaf of sheaves (when working
with triangulated categories)

b
sh : U — DRnpepy(U)
is not a sheaf, but (when working with homotopy categories with dg enhancements)
T b
Shie : U —> DAﬂT*U<U)
is itself a sheaf, and this will bring much convenience to us when gluing sheaves on small

open subsets.

6.1. Local Construction. Given a Lagrangian submanifold A C T*M, without loss of

generality we consider a simple case where the front projection 7| : A/R; — M has finite
fibers.

Lemma 6.2. Let A C T*M be a conical Lagrangian so that the front projection |z :
A/Ry — M has finite fibers. Let p = (x,§) € T*M. Then there is a neighbourhood U C M
of  and .F € D*(U) so that SS(F) C ANT*U and .F is simple along A NT*U.
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Ix1=-g

FIGURE 6. The closed cone v¥ and the closed subset Z in M = R™.

The idea is very simple. By Proposition 4.7 one knows that there exists a sheaf %, €
DP(M) simple at p € T*M. However that only creates a neighbourhood V' around p where
Fo is simple. In the lemma we instead want a neighbourhood around 7y M where % is
simple. Hence the main difficulty is to cut off the simple sheaf so that at the fiber T M it
has no singular support away from T;M NV.

Proof. Without loss of genrality, we may assume that ANT;M = R, £. By Proposition 4.7
there is a neighbourhood V' C T*M of p, .# € D°(M) such that

SS(egio)ﬂVCAﬂV

and % is simple along A at p. We may assume that T;M NV N A = R £ Now pick an
open convex cone v C T M such that £ € vy and ¥ C T M N V. Then we claim that there
exists an exact triangle
7% Foog

so that SS(¥4) N~y =0 and T*M N SS(F) C .

Under the assumption of the claim, consider a conical neighbourhood V, of v in V' C
T*M. Now A\V, is disjoint from p, by the assumption that A N T M = R, ¢, we know
there is a neighbourhood U C M of x so that ANT*U C V,. Then

p ¢ (SS(F)NTU\V, = (SS(F)NT*U)\A.

We can now define U’ = M\ ((SS(Z) N T*U)\A).

Finally it suffices to check the claim. Choose a local chart U and assume M = R".
Without loss of generality we assume vV C {z|z1 < 0} C M. Now we pick a closed subset
Z C M so that (see Figure 6)

(1).0€ Z°% (2).Z C {z|z1 > —€}; (3). = NIZ = N:(y").
Let s: M x M — M, (z,y) — x —y. We now define
F =k x RT7(Fy) = Rma (s kv @ 71 'RT 2(F)).
Let u : % — %( be the composition
F s kyv * RUz(Fy) — ko * RUz(Fy) = RUz(F0) — Fo.
Using the microlocal cutoff lemma 1.9, u is an isomorphism on Z° x v°. At the same time,
SS(F)C M x~, TfMNSS(F) C .

Hence it suffices to check that u is also an isomorphism on 9y C Ty M.
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Let I' = {{ e ¥\{0}|3z € U, (z,§) € SS(Zp)}. By refining U we may assume that I' C .
Now it suffices to show that

¢el, V(0,8 € SS(F), € € 0v\{0}.
This will tell us that & € . By the tensor product formula (since 72 : s~'(y)N7 1 (Z) = M
is proper), if (0,&) € SS(%), then there exists

(£,€) € (=55 (kv)) N SS(RT2(F)).
Now z € U, so it suffices to check for any (z,§) € (=SS(k,)) N SS(RI'z(Fo)),

(x,8) € SS(Fo).
Since (z,§) € (=SS(kyv))NSS(RUz(F)), x € 0y. lf x € Z°, %y ~ RI'z(Fp), so (x,§) €
SS(F). f x € 0Z, N} Z = N;~°P = R>o€. Suppose (z,£) ¢ SS(%p). Then
€ € TEM N SS(RT4(F0)) € (~Ra€) + (T2 M 1 SS(F0)).

This implies (z,§) € SS(.%p), which is a contradiction. This completes the proof. O

6.2. The Structure of ushy. Given A C T*M a conical Lagrangian submanifold, we can
associate the sheaf of categories ushy whose stalks are Mod(k). The sheaf of categories is
determined by (up to homotopy) the classifying map

A — BAutg(Mod(k)) = BPic(k).

We would like to find out the obstruction of existence of global sections in pushp. The
following theorem won’t be proved.

Theorem 6.3 (Jin-Treumann; Jin). Let k be an Ea-spectrum and A C T*M be a conical
Lagrangian submanifold. Then the classifying map A — BPic(k) factors as

A5 U0 2L BPic(S) — BPic(k),

where G : A — U/O is the stable Gaussian map and BJ : U/O — BPic(S) is the delooping
of the J-homomorphism.

The obstruction classes are the Maslov class and the relative second Stiefel-Whitney
class when k is an ordinary ring. We know that U/O ~ B(Z x BO). Since k is discrete, the
J-homomorphism factors as

J:Z x BO — 7 x B(Z/2Z) — Pic(k).
Now the map L — B(Z x B(Z/2Z)) exactly defines the Maslov class and relative second
Stiefel-Whitney class.

From now on we assume that k is a ring and show that in this setting the Maslov class
and the relative second Stiefel-Whitney class are the obstructions.

6.2.1. The Maslov Class and Maslov Sheaf. Given A C T*M a conical Lagrangian subman-
ifold, let’s consider the sheaf of categories ushy. In order to prove the existence of a global
object in DY (M), first we try to consider a global object in ushy(A). However there is an
obstruction of the Maslov class.
Let
oy 2 LGr(T*M) — T*M
be the Lagrangian Grassmannian of 7% M and

o LGr%(T*M) — T*M

be the subbundle consisting of Lagrangian planes transverse to the Maslov cycle T, (T M).
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Definition 6.2. Let A C T*M be a conical Lagrangian submanifold. Let
opn:Upn — A
be the subbundle of LGrO(T*M)|s consisting of Lagrangian planes transverse to A. Let
In={(l,mroop(l))|l € Up} C U x M,

In = {1, 2;0,X)|(z,&) = oa(l)} € T*(Up x M).
A C® function ¢ on Uy x M is admissible if for any (x,&) = op(l),

pi(z) =0, dpi(z) =&, (dr)o(Te M) = 1.

One can show that admissible functions exist. Since this is a purely differential topology
exercise, we omit the proof here. For any sheaf .%, whenever we want to consider the
microlocal behaviour at (z,&), we always consider a function ¢ so that ¢(x) = 0,dp(z) = £
and take the local cohomology

R ,-1(10,4-00)) (F ) -
Here we're just parametrizing such functions by Lagrangian subspaces so that everything
can work out in the Lagrangian Grassmannian.

The following theorem is the preparation for constructing a map from % € D( A)( ) to

a local system, which will be given by
'—)Rﬂ'l *e/V R7T1 *(RF ([07_,_00))(77'2_19)][\).

(3) is saying that this is indeed a local system and (4) is saying that this local cohomology
is indeed a parametrized version of the usual local cohomology we use.

Theorem 6.4. Let ¢ be an admissible function and F € D( )( ). Let m : Uy X M —
Upn,m9 : Up X M — M be the projections. Then for

./%@734‘ = Mhom(kgpfl([(],-i-oo))aﬂz_ly) S Db(T*(UA X M)),

J’{p’g; = Rr(pfl([o’_,_oo))(?@_ly)[/x S Db(UA X M),

there exists a neighbourhood V' of I such that

(1). T*V Nsupp(M, 7) C Jn and SS( M, 7
(2). R#*(///go,ylwv) ~ Np7;

(4) (R7T1* )Z_RF —1([0’_’_00))(9)7]\/[(1),VlEUA.

Proof. (1). Note that there exists a neighbourhood V' of Iy C Upy x M such that

(). SS®(kyp-1(j0,400))) N TV = AZ is a submanifold;

(ii). (Ux x A)NR4A, = Jp and they intersect cleanly.

Then condition (1) will be satisfied. Indeed, as long as such a neighbourhood is con-
structed, we can use the estimate SS(uhom(kcpfl([O,Jroo)),772_19)) C C(SS(ky-1([0,400)))s
SS(m5 7)) € C(Ry Ay, Up x A).

(2 ) By Sato’s exact triangle 3.14 we can obtain that

jwy) C TjAT*(UA x M);

1
k)1 ((0400) @ T2 F @K1y = Np 7 = Rine( My 7)1, -

We know that ¢ ([0, +00)) is a smooth hypersurface, so k;—l([o o)) = Kpm1((0,400))- How-
ever since I C ¢~ 1(0), the first term in the exact triangle is zero.

(3). By part (1) .#, 7 is locally constant along Jx. Since Jy — Iy has contractible fibers,
by part (2) we obtain the result. Note that the projection 7o : In — Up is a diffeomorphism.
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(4). We prove that i; : {I} x M — Up x M is non-characteristic for RFW1([O7+OO))(772_19)

in a neighbourhood of x. By part (2) we estimate Rir.(uhom(ky-1(jo,100))5 75 L.7)). Indeed
we have

Trﬁwgl(C’(UA x A,RyAy)) C wﬂwgl(TjA (T"(Un x A))) =17, (Up x A).

Thus we can now conclude noncharacteristicity.
Non-characteristicity implies that we have

i;1%7gz ~ Z}%7y & w;/}]A = i;RFQD—l([O,+OO))(7T271f) ® OJ;/}]A ~ RI' ﬁ)m

o1 (0.400))

This completes the proof. O

Definition 6.3. Let ¢ be an admissible function and my : Ux X M — Up,me : Up X M — M
be the projections. Then

ma : Dy (M) — DbLoc(Uy) ;
F = R (RT o1 (o, 400)) (M3 7)1 ) -
For | € Uy, the microlocal germ of F at | is mp (F) = (ma(F)):.
Proposition 6.5. Let A C T*M be a locally closed conical Lagrangian. Then
ma, : Diygy (M) = D’Loc(Uy,)
for all Ay C A open subsets induces a functor of stacks
mp : ushpy — O'A’*(DbLOCUA).

In particular, for any F,9 € D?A)(M), there is a canonical isomorphism

o PHuhom(F,9) = H°RA om(mp(F), ma(9)).

Proof. Let Ag C A, and & € D%’AO)(M) such that SS(F) N Ay = 0. Then mp,(F) =

0. Hence the map my, factors through D°(M;Ag). Therefore there is a natural functor
between prestacks and after sheafification this gives the functor mp. This is an isomorphism
because of proposition 4.4. O

Although the previous proposition tells us that the functor my is fully faithful, it is not
actually an equivalence. In fact we have to keep track of the module structure over the
diagnol, which will be characterized by the Maslov sheaf. First recall that

D.F = R#om(F,wy), D'F = RCom(F, k).
Proposition 6.6. There exists a neighbourhood V- of Ap in A x (—A) and a simple object
Jn, € pshy (V) so that for any Ao C A, F € D?AO)(M), there is a canonical morphism
Hn, — (1 F @ 1, ' DF)
which is an isomorphism when F is simple.
Proof. Choose a locally finite open cover {A;};c; of A. Then it suffices to construct #; on
A; and glue them using d;; : J7; = J; in ushV(AAmAj).

Let %; be a simple sheaf on A; and let 7 = Wflﬂ ® w;lDﬁ. Then we claim that
there exists a (coherent choice of) d;; : % — J; in pshy (A; N A;) that is compatible with
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bz € HO(AAmAj,,uhom(kA,ﬂl_lﬁ ® ﬂz_lDﬁ)) which is the image of identity under the
map
Hom(Z,F) = 8' R om(n . F, myF))
= Hom(ka, RoCom(ny .7, my.F))
— HO(AAimAj,ILLhOm(]kA,ﬂ'I_Iy ® my "D.F)).
By proposition 4.4, we know when .%; is simple, phom(ka, 771_13% ®7r2_1D<%-) ~ ]kAAmAj.
There is an isomorphism
phom(ry ' F; @ my ' DFy, m  F; @ my | DFj)| agm,
— phom(ka, wl_lﬂi ® W{lDﬂi)
® phom(r *F; @ Ty ' DF;, 7w * F; @ my ' D.F;)
— phom(ka, 7 *F; ® 15 ' D.F;).

Now we just let d;; be the preimage of .z, under the isomorphism. U

Definition 6.4. Let A C T*M be a locally closed conical Lagrangian, and Uy = Ap X Ax(—A)
Upx(—n)- Then the Maslov sheaf is

//ZA = mAX(*A)(%AA”UA S DbLOC(UA).
In addition, M\ = vxljZA where vy is the map Up xx Uy — Uy, (l1,02) = 11 & (—12a).

Proposition 6.7. Let U C Up be a connected component. Then M| € DLoc(U) is a
rank 1 local system in degree TAX(,A)(U)/Q.

Proof. Without loss of generality, we assume that A = T\ M. Consider locally a simple

sheaf .7 € D?A) (M) such that

Hn, =T F @ny, ' DF.
We may assume that .# = ky. Then since wyy; = k[dim N — dim M] on N,
Hny =7 ky @ 15 "Dk = kv [dim NJ.

Choose a function ¢ on M x M such that ¢|nxn is a non-degenerate quadratic form with
signature 74 (7). Then

mA(LNXN)l ~ Rrw—l([07+oo))(LN><N)(x7m) ~ L[—TA(Z)/Q — dlmN]
Therefore since L ~ kyxn[dim N — dim M| we know that ma(Lyxn); = k[—7a(1)/2]. O
Definition 6.5. Let A C T*M be a locally closed conical Lagrangian. Then the sheaf of

categories pgermp is defined by mapping all open subsets Ag C A to categories of pairs
(Z,ug), where £ € DLocy, (Uy,), and

Uy s MyRT, L T L
being commutative with the composition of Maslov sheaves.

Guillermou defined the Maslov sheaf as 7, L7z ® Ty LD’ # . However, I think instead the
correct definition should be 7, '.Z @, ! D.Z in order to get the degree shifting 74 (1) /2. The
point is that D’ omp = m_p o D instead of m_j o D’. Hence although what one really want
is ly ®mTy 1D’ %, when defining the Maslov sheaf one should really use T L7 ®my 'pz.

We didn’t define compositions between Maslov sheaves. Basically it is an isomorphism

-1 —1 ~ 1
Tig AN @ Tog MN — T 5 M,
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where m;; : U X — U/% is the projection to the 4, j-th components. The crucial fact one will
use is that

Mo My @ g My = ((n7' L @1y ' D' L) @k) @ (k@ (] L @y ' D'.Z))
~rl e (LoD L)' DY
~ 'L @y DL~ My
Theorem 6.8. Let A C T*M be a locally closed conical Lagrangian. Then
mp : usha(Ag) — pgerma (Ag)
F o <mAO (F), ug : My @75 'y (F) wl—lon(y))
is an equivalence of stacks.

Proof. First we check that this formula indeed defines a functor.
We consider an open cover with simple objects .%( in each Ay C A. It can be easily seen
that one can replace the functor in the statement by

psha(Ao) — pgerma(Ao)
F — (on (Zo) ® Uxoluhom(fo, ﬂ),um/\o(yo) ® id) .

We know that as %y is simple, phom(.%y, —) is an equivalence.
Assume that Ag is contractible and there is a section s : Ag — U. Let 2 = ma,(%0).
We prove that the functor

tg, : DLocy(Mg) — ugerma (Ag)
A —> (fo@dK&(f),u$O®idg)
is an equivalence. For (£, uy) € pugerma(Ao), define
jc%(g,utg) = Sil(g & D’.,%O).
We prove that t 4 and jg are mutually inverse.
It suffices to show that there is an isomorphism (2, uy) >~ tg 0 jg (£, uy). Since
Uy, My R Ty Ly D L,

we have an isomorphism .#\ ~ 7 la® Ty D' %. Hence (by dualizing 71 130) there
exists

Uy @idprg, T (L @ D' %) = 1L @ D'%).
Let i : Uy, — U/%O be i(l) = (I,s 0 op,(1)). By applying i~! (and dualizing D’.%) we have

L5 Lywoyls (L @D %),

which essentially means that ¥ ~ % ® UXOI (% (&L, ug)). In addition, one can check that
Uy =g ®id-1(ggprg)- This completes the proof. g

6.2.2. Twisting of Local Systems. Consider a local system .# € D®Loc(M). Then it deter-
mines a homomorphism € : 71 (M) — GL(n,R) — Z/27Z. In the previous section, we’ve
considered local systems on Uy. However, w : Uy — A may not have connected fibers.
Hence we embed the fiber Uy ) into a connected space and first consider the monodromy
along the fibers Uy .

Our main goal will be to show that the monodromy information actually completely
recovers the module structure over the diagnol or Maslov sheaf, so that we can throw away
the notion of microlocal germs.
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Definition 6.6. Let [ € Uy, be a Lagrangian subspace transverse to both T,A and T,T; M.
Let

up(l) : T,TEM — T,T*M = TyA &1 — T,A.
The embedding map is
i:Upp = Isop (T, Tp M @ A" (T,T; M), T,A ® A"(T,A))
[ - up(l) @ Aup(1).

For any connected component of Uy p, let e; be the composition

m(Unp) = mi(Isoy (T, T M @ NY(T,TEM), T,A @ A™(T,A))) 2> 7/2Z,
where €, 1s the canonical morphism.

Proposition 6.9. Let .% € D?A) (M). For any connected component of Uy p, the mon-
odromy for ma(F)u, , 5 €,
Let A = T{M where N = {z|z; = ... = x;, = 0}. Then any Lagrangian subspace in Uy
can be represented by a symmetric matrix A so that Ay 1 njet1,...n = (Aij)kri<ij<n 18
non-degenerate.
la={(v,Av)lv e T, M, A: T, M — T, M}.

Consider u,(A) : T,Tx M — T,A. If u,(A)(0,1) = (0,..., Tk+1, ..., Tn, &1,y oo, €k, 0, ..., 0), then
(0,m) = (v, AV) + (0, ooy Tps1y ooy Ty €1y ooy g, 0, 1.0, 0).
As a result we have
n=(&,&,0,..,0) — A0, ....,0, Tk11, ..., Tp)-
If we consider the coordinate system ({1, ..., &k, Thy1, ..., ) for T, A, then
~1
wn= (" At )

This will enable us to do calculations in the following proof.

Proof. Without loss of generality, we assume that A = T\, M and choose a local chart so
that N = {z € R"|z; = ... = 23, = 0}. Then .# ~ Ly near p € T\, M. Since Z is the initial
object in the category of rings, we assume that .# ~ Zx near p € TX, M.

A Lagrangian plane in Uy, can be represented by a symmetric matrix A so that the
determinant det((A;j); j>k+1) # 0. Fixing a connected component U is the same as fixing
sgn(A). Let’s say sgn(A) = 2l + k — n. After choosing a base point

diag(0, ...,0,1,...,1,—1,...,—1).
m(U) is generated by I';; (k+1 <i<k+1,5 > k+ 1+ 1) where

i(sp(h (pv Q) 7& (iai)7 (ivj)v (]>Z> or (]a]):
sind,  (p,q) = (4,4) or (j, 1),

Li;(0 =
5O = cost. (n.g) = (1)
_COSH7 (p7q>:(,77])
One can compute that €,(I';j) = —1. However, the canonical map e, is surjective. Hence it

suffices to show that the monodromy of mx(Zy) is —1.
Define the admissible function along I';; to be

eoln = 2igr. o Tij(O)Tpsr,... -
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Then by Morse theory, ¢, ([0, +00)) N N is homotopy equivalent to the stable manifold of
wg. Now we know

mA(ZN)r;;() ~ Rrwgl([o,Jroo))(ZN) = H:(go(;l([o, +00)); Z).
The stable manifold of ¢y is
Vo= (eg,ealk+1<a<k+la#i), ep=cos(0/2)e; +sin(6/2)e;.
Since the loop of unstable manifolds is not orientable, the monodromy is —1. O
We remark here that the space of non-degenerate symmetric matrices is a union of flag
varieties. The fundamental group can thus be calculated.

Now for a fiber bundle £ — M, we define the category of local systems whose monodromy
along fibers are always fixed to be € : Hi(E) — Z/2Z.

Definition 6.7. Let E — M be a fiber bundle and € : Hi(E) — Z/2Z. Then the category

DPLoct(E|M) consist of local systems £ so that the monodromy of |k, is ;. The sheaf
of categories DLoch‘M is the sheafification of U +— D®Loc¢(U).

Lemma 6.10. Let E — M be a fiber bundle and U — M a subbundle with connected fibers.
Then there is an equivalence of stacks DbLoch|M ~ DbLocfﬂM.

Definition 6.8. Let A C T*M be a conical Lagrangian. Then
Tp = Tsoy (ixn " T*M @ A" (iyn ' T* M), TA @ A"(TA))
is a fiber bundle with fiber
Iso (T, Ty M @ A" (T, T, M), TyA ® A"(T,A)).

The tensor product here is added in order to make sure the resulting map is in GL, (n,R)
since we don’t know whether u,(l) itself is in GL (n,R).

However, when passing from DLocfjlAI A o DLocEI/A‘ A» there is an issue, that is, Uy does
not have connected fibers, so we won’t get an equivalence of stacks. Hence instead we
stabilize by Ex = T&N,IRN C T*RY. Stabilization will introduce degree shifting of Maslov
sheaves by the Maslov potential.

Lemma 6.11. Let A C T*M be a locally closed conical Lagrangian, upn = 0 and Up has
finitely many components U; (i € I). Then there exists N € N and components V; (i € I) of
Uz, such that U; x Vi (i € I) are in the same component W C Upxz, -

Proof. Note that the Maslov index TAx=, = 7o — 7=, classifies all connected components.
The Cech cocycle (7 (U;) —7a(Uj))i jer in HY(A;Z) is twice the Maslov class, which is equal
to zero. Hence one can find (n;);c; such that

TA(Ui) — TA(Uj) = 2(717; — nj).

Now it suffices to choose N large enough so that the Maslov index on Zy can be large
enough, and consider V; to be the component with Maslov index 2n;. O

We explain here why (7a(U;) — 7a(U;))ijer defines the Maslov class in H'(A;Z) (the
reader may refer to Geometric Asymptotics, Guillemin & Sternberg, Chapter IV, Section 3
for a complete proof). Firstly, each component A; = 7(U;) admits a grading. This can be
seen through applying the map

u; i\ T*M — TA, uy(U;) : T,TEM — T,A.
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If these gradings or trivializations can be glued together depends on the transition functions
(fij)ijer = (u; 0 uj_l)z-vje[. Note that the Maslov class is the pull-back of the generator
o € HY(SY) by
O : A — LGr(T*M) — S, U, > det(U,)*

where U, € U(n)/O(n) ~ LGr,(T*M). Consider the commutative diagram

HOMCY) — HO(5':C5)

\ )
HY(A\;Z) «+—  HYSY7Z)

where C5 is the sheaf of S Lvalued functions on X, and the vertical arrows are given by
z — (log z)/2my/—1. Since the generator in H'(S';Z) is given by the identity section in
HO(SY, Cg1), we know that the image of the section 65 € HO(A;CX) in HY(A;Z) is just the
Maslov class. However, we claim that

g Tom (det()?/1 et 1)) = 5 (U) = 7a (0))

Indeed, the left hand side is equal to the number of eigenvalues that change from negative
to positive, and so is the right hand side. This shows that ((7a(U;) — 7a(U;))/2)ijer is
indeed the Maslov class.

Lemma 6.12. Let A C T*M be a locally closed conical Lagrangian, upn = 0 and Up has
finitely many components. Suppose F € D’(’A)(M) is simple along A. Then there exists
L € Loc“(Ia|N) such that

(1). mp(F)|u ~ ZLluldu] for some dy € Z where U C Uy is a connected component and
dy — dyr = (1a(U) = 7a(U")) /2;

(2). mAX(_A)(ﬂ'flﬁ ® ngDfﬂﬁgl ~ (r 'Y ® ngD/$)|ﬁ§l[_l] where U is the com-
ponent with Maslov potential 21.

Proof. We only prove (1) (the proof for (2) is similar). Let W be as in the previous lemma.
Let £ = maxzy (17 1.7 @ my 'ky)|w(d] be a local system concentrated in degree 0. Since
DPLoct(Iaxzy|A X Zn) =~ DPLoct (WA x Ey), £ extends to Zyx=,. However, one can
prove that there is an unique isomorphism

may (n)lve = Zalys (1£/2]]

Note that Zy is the only rank 1 object in Loc(ZEx). Therefore we have a unique decomposi-
tion .¥ ~ 771_1.,%\ ® 772_131\7. Therefore the isomorphism max=, (Wflﬁ ®7T2_1]kN)|U_XVk [d]
1 EN

and mz, (kn)|yx ~ Zn|yx [[k/2]] together gives the isomorphism we want. O
=N =N

Now we can take into account the degree shifting and modify our definition of microlocal
germs. Similarly one can define the composition of Maslov sheaves, which will again be
omitted though.

Definition 6.9. Let A C T*M be a locally closed conical Lagrangian. Then the modified
Maslov sheaf is M} |v = AMn[Tax(—p)(U)/2] where U C U} is a connected component. The
sheaf of categories pgerm’y is defined accordingly.

Now one can check that the twisting by the monodromy along fibers actually recovers
the module structure over the diagnol or the Maslov sheaf, in other words, the information
of microlocal germs.

Theorem 6.13. Let A C T*M be a locally closed conical Lagrangian. Then DbLocEIA‘A —
pgermy is an equivalence of stacks.
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Proof. It suffices to recover the isomorphism
Uy My R TS = L

By passing to a small open subset, we may assume that A is contractible. Then D Loct(Zx|A)
has a unique object % with stalk Z. One can write . = % ® UX1$ " and now the result
becomes trivial. O

6.2.3. Maslov Class and Stiefel- Whitney class. In the previous section we are assuming that
the Maslov class up = 0. Here we consider the Maslov class and show that the obstruction
of existence of global sections is exactly characterized by the Maslov class (determining the
degree shifting) and the relative second Stiefel-Whitney class (determining the twisting).

Definition 6.10. Let C be the sheaf of derived (differential graded) categories, {A;}icr an
open cover of A, and a = (aij)ijer o degree 1 Cech cocycle in Z. Then Cq is the sheaf of
categories glued by C; and Ci|a,nn; — Cjlainn,, F = Flaij].

Lemma 6.14. Let A C T*M be a locally closed conical Lagrangian with Maslov class LA -
Then there is an open cover {A;}icr of A and a representative p = (wij)ijer of pa such
that pgermp ~ (ugerm'y),.

Proof. Consider an open cover {A;};c; coming from connected components {U;};er of Up
with simple sheaves .%; along A;. Then my(.%#;) will be concentrated in degree dy;,. Then
(du, — de)iJG 1 represents the Maslov class of A. The gradings work out well because

dy, — dy; = 1(TA(Uz‘) —1A(Uj)) = ! ax(-a) (Ui X (=Uj))-

2 2
Now we can define the equivalence pgerma(A;) — pgerm/y(A;) locally by Ly, —
Z|—dy,]|y;- This can be glued to a global isomorphism. O

Theorem 6.15. Let A C T*M be a locally closed conical Lagrangian with Maslov class LA -
Then there is an open cover {A;}icr of A and a representative p = (ij)ijer of pa such
that

ushp ~ (DbLOCEIMA)H'
In other words, there exists a global section in ushp iff ua = 0.

Definition 6.11. Let E1 9 — A be vector bundles of the same rank and {A;}ier be a good
cover of A. Letu = (ujj); jer be a Cech cochain given by isomorphisms w;; : Z;|,; = Zilny;
of rank 1 local systems twisted by

¢: H,(Zp, p,0) = Hy (Isoy (Ey @ A™(E1), By ® A"(Ey))) — K,

and let w = (wijk)ijker = (Uki © Ujk © Uij)ijker- Then the relative second Stiefel- Whitney
class of By and Es, denoted by rwo(E1, Ey), is the class represented by w in H?(\;Z/27).

We claim that whenk = Z (kx = Z/QZ), T"LUQ(El, EQ) = ’UJQ(EQ(X)AnEg) —U)Q(El ®AnE1)
First when E} is trivial, Zxn g, A is the principal bundle whose associate bundle is Ey QA" Es.
wa(F2 ® A" E») is the obstruction for the principal SO(n)-bundle to be lifted to a principal
Spin(n)-bundle, so let v;; : A;j; = SO(n) be the transition function, and 0;; : A;; — Spin(n)
be the lifting, then

W = (Wijk)ijker = (ki © Vjg © Vij)ij kel
defines the second Stiefel-Whitney class. On the other hand, note that for an e-twisted
line bundle on A;; x SO(n), its corresponding principal bundle is, since e is nontrivial,
Aij x Spin(n). Hence
uij © Nij x Spin(n) — Ay; x Spin(n)



40 WENYUAN LI

is indeed the lifting of the transition function on the SO(n)-principal bundle. Therefore it
defines the second Stiefel-Whitney class.

Theorem 6.16. Let A C T*M be a locally closed conical Lagrangian. Then there exists a
simple global section in pshp iff rwa(iim 1 T(T*M), TA) = 0.

6.3. Convolution and Anti-microlocalization. From this section on, we assume that
the manifold we're considering is M x R, where the R factor is required as the direction of
the Reeb vector field, and thus the conical Lagrangian lives in T ,(M x R) (where 7 is the
fiber coordinate for the R component).

By Theorem 6.8, we know that there is a global simple object .# € usha(A). There
exists an open covering {A;};c; of A such that 7|, is represented by .%; € D?Ai)(M ), and
the transition functions are

ulj c ]{O(AZ N Aj,/.LhOm(j\iaj\j)’AimAj)'

Remember our goal is to give a sheaf .7 € Di (M). Therefore we need to represent u;; by
elements in Home’A . )(M)(ﬂi, ;) in order to glue a global object.
iNAj
In fact, we would like to make use of the R direction, or the Reeb direction and consider
translation along that direction. In addition we want to consider all translations at a time,
which will require another extra R, factor to encode how much we are translating. We will
construct a functor Wy such that
Ly Hom 1 0.0) (¥ (F), W, (9)) = H(TU, phom(F,9).
e>0
Such a functor ¥y will be built by convolution. The key idea is coming from Tarmarkin,
where he showed that the convolution functor

Ko +00) * — ¢ DP(M x R) = D" (M x R); F - Kjg_4o0) x -F

is the projection from D’(M x R) to the left orthogonal complement of DfSO(M x R),
i.e. D°(M; T7-o(M x R)) is realized as the left orthogonal complement of DfSO(M).

Definition 6.12. Let U C M x R be an open subset. Define the projections
g MxRxRy - MxR, (z,t,u) — (x,t)
reMxRxRy - MxR, (z,t,u) = (x,t —u).
Then let
Uy =r Y U)ng Y U) = {(z,t,u) € M xR xRy |z x [t —u,t] C U}.

and write qu = qlu,,rv = rlu.. Let v = {(t,u) € RxRL|0 <t < u}, v1 = {(t,u) €
RxR,|[t=u}. Let s: M x R2 x R, — M x R x Ry be the addition. Then

Uy (F) =k, F = Rs)(1] " F @75 'k, ). -

One may wonder why we restrict to U, after applying the convolution functor. This can
be illustrated from the following diagram, which shows what will happen when we finally
start to glue.

In fact, when gluing together U; x R and Us x R, the singular supports in different pieces
may overlap because extra Reeb chords may be created after gluing. Restricting to U4, Uay
is preventing any extra Reeb chord from shrinking (However, this does not mean that in a
single piece Uy or Us, there cannot exist any Reeb chords that shrink to a point).

As a counterexample, one may consider a stablized Legendrian knot in 7%°°R2. Consider
the doubling link constructed by pushing forward along the Reeb direction by € > 0. When
€ is small, there is a sheaf with singular support in the doubled link. This can be down by
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FIGURE 7. Let Uy, Us be two intervals and A consists of some isolated points.
After applying the convolution functor, the singular support of the sheaf will
be the blue rays. In the dark grey region where U; x R and U; x R overlap,

one can see that the singular support don’t glue. Hence one should restrict
to Uiy, Ua4 where such things won’t happen.

—
— L

[1

FIGURE 8. On the left is the front projection of a two copy of a stablized
knot when € is small, together with a sheaf whose singular support is the
two copy. On the right is the front projection of a two copy when e is large,
where no such sheaf exists.

gluing two simple sheaves on two different charts of the zig-zag (since there is no simple
sheaves along a zig-zag, one has to split into two different charts). However when ¢ is large
enough so that the front projections of the two copies become disjoint, then it is well known
that no such sheaves can exist (see, for example, Shende-Treumann-Zaslow). And this is
exactly because when ¢ > 0 is large, Reeb chords between the two different charts
will shrink and create double points in the process.

However, one may wonder why this is not the case for some other Legendrian knots,
for example the standard unknot. There the unique Reeb chord may also shrink, however,
when € > 0 is large one can still find a sheaf whose singular support is the two copy of
unknot. This is because one can choose an open cover consisting of a unique open subset
U and a sheaf that represents the simple object in push. Then one does not need to glue.
Here one can see that in a single chart Reeb chords are allowed to shrink, as long as no
extra Reeb chords connecting two different charts shrink.

Lemma 6.17. Let a < b and F € DgZO(R). Then ki p x* F = 0.
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Proof. Fix x € R. By definition we have
(k(a,b] * ﬁ)x = RFC(Sil(‘T)a 7"'1_lk(a,b} ® 772_1<gz|s—1(x))
= RFC(R7 F® k[x—b,m—a))'
Notice that there is an exact triangle

RU([z — b2 — a],. %) = Faa = RU(R,.F @ kpy_paa) o

and the first map is an isomorphism by microlocal cutoff lemma. This proves the result. [
Lemma 6.18. For ¥ < Dgzo(M x R), the canonical morphism ri;* F[~1] = kyo ¥ F is
an isomorphism, and there is an distinguished triangle
1
P F 1] = Oy(F) = gt F s |

Proof. Note that r;;'.F ~k,, ¥ .Z. Let 4/ = 5\70. We have a distinguished triangle

1
P F-1] > ko« F = ko ¥ F Dy

To prove the first morphism is an isomorphism, it suffices to show that k., " .%# ~ 0. This
is because

(k,\// */ 9)(17,“) ~ k(O,u} *’ 9 ~ 0.
Now the theorem follows from the standard exact triangle
k,yo*’ﬂékv*’f%k%*’ﬁﬂ
and the fact that ¢;'.F ~ky, ' 7. O

Lemma 6.19. Let .# € D°(U) and V. C U be an open subset. Assume that for any
xeM,V,=Vn{z} xR), F|y, is locally constant. Then Yy (F)|y ~ 0. In particular if
SS(Z|v) cV CcT*V, then ¥y (F)|y ~ 0.

Proof. Note that Uy, (F|y,) ~ Yy (F)|y, and V; is a disjoint union of open intervals. Hence
the result follows from direct computation. O

Remember that our goal is to build a bridge between the RHom(—, —) of convolutions
and phom(—, —). Define

i:U—=UxRs, (z,t) = (2,£,0); j:UxRy = U xR, (z,t,u) — (s,t,u).
Our goal is to show the following isomorphism:

Theorem 6.20. Let U C M xR be open, .F € D?ZO(U) and 9 € D_(U). Then we have
a natural isomorphism

i ' Rj.RA om(Vy(F), Vy(9)) ~ Riy.phom(F,9).
In particular for Z C U being compact we have

H* (it (Z), phom(F ,9)) =~ lim Hom(Yy (F)lw, Yu(94)[k][w)-
W:ZCCWCCUxRs

Therefore, Vi defines a fully faithful functor between the sheaves of categories
U psha(A) = lim shy <10yt a) (M X R x (0, €)).

e>0

We use the exact triangle in Lemma 6.17 and hence we prove two Propositions 6.21 and
6.24 separately. Here is the first proposition we need.
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Proposition 6.21. Let .#,94 € D°(U). Then there is a natural isomorphism
i ' RjRAom(Vy(F), q;'Y) = Riy.phom(F,9).
We need a few lemmas.

Lemma 6.22. Let ¥ € D?ZO(U),g € Db_(U). Then there are natural isomorphisms

phom(Vy (F), q(;lg)|T*U+ = MhOm(Q(;ly»Q[}lg)

~ —1
7o, = Raud ay o hom(F .9 ) |y, -

Proof. For the first isomorphism, using the exact triangle in Lemma 6.17, it suffices to show
that
uhom(r&lﬁ[fl],qulg)b*wr ~ 0.

This follows from the fact that supp(uhom(r;' Z[-1],q;'9)) C SS(r;;*F) N SS(q;'Y).
The second isomorphism follows from 3.13. U

Lemma 6.23. Let .#,%4 € D*(U). Then there are natural isomorphisms
i 'Rj RAom (U (F),q;'9) = i 'Rj. Ry, «(phom(Vy(F), qalg)’:ﬁ*m)'
Proof. Write RoCom!(F,4) = 6 'R om(n] . F, 75 '4). By Sato’s exact triangle 3.14, it
suffices to show that
i 'Rj (R om! (Y (F), q;;' D)) ~ 0.
Viewing v as a subset in M x R?, we have
T Rju(RA om! (Vy(F), qp'9)) = i RL prse, (RA 0om! (W (F), ;')

where U (F) = Rs|(m; 'F @ 75 'k,).

Note that RI'yrxrxr, H# = HrxrxRs, Wwhen SS() C {(z,&;t,7)|7 > 0}. Hence here
we estimate SS(RAom! (Wi, (F),q;'¥)). Using the fact that SS(k,) C {(s,t,0,7)] — T <
o < 0}, we can estimate

SS(Vy(F)lv) C{(@.&s,t,0,7)| =7 <o <O}
On the other hand, SS(q;'¥) C {(x,&;t,7)|7 = 0}. Therefore
SS(A) C {(z,&;s,t,0,7)|o > 0}.

Now the right hand side is just R#Zom/(i 10}, (F),i 1q;'9). Let i : M x R? —
M x R? x Ry, (z,s,t) = (z,5,t,0) and s’ : M x R? = M x R, (z,s,t) > (s,s +t) (such
that s o4’ =io0s’). Hence by the base change formula

i (F) =i Ry L F @ 5y k) = Rs) (i) TN r L F @ k) = 0

because ka,hRX{O} = 0. This completes the proof. O
Proof of Proposition 6.21. By the previous lemmas, it suffices to show that

i_le*RwU+’*(RqU,dvgqgir,uhom(gz, %)|T*U+) ~ Rry phom(F,9).
This is because by base change formula, since 7y o qux = qu © Ty, © qu,4, we have

Rv, «(Raua )y ey, ) = R(mu, 0 quahidy 27 ey

~ qy Ricua A | oy = q R o | ey
Now it suffices to show that
i Rjuqt o ~ A
Note that ifle*qal ~ z'*lRl“UX]R{+ o 7r1_1. Since SS(Wl_lfi) C T*U x R, we have
i_lRFUXR+ (Wflﬁ) ~ i_l(wflﬁbxﬂgzo) ~ Z.

This completes the proof. O
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This completes the proof of Proposition 6.21. Here is the second proposition we need.
Proposition 6.24. Let 7,94 ¢ D*(U). Then
RAom(Vy (F),r; 9 ]-1]) ~ 0.
Proof. Let V.C U be an open subset. Then since 7“‘719 = ri/gf[—l], by adjunction we have
RHom(\I/U(ﬁ)W,rElg[—lﬂv) ~ RHom(Uy (Z|v), ry,'9[-1]|v)
~ RHom(Rry, Vv (Z|v),9[-2]|v).

Now we prove that Rry, Uy (F) ~0,V.F € D’(V). Let s : M x R? = M x R, (,s,t) —
(z,s+t)and v’ : M xR2 xR, — M xR?, (z,s,t,u) — (z,s,t—u) (such that s’ o7’ = ros).
Then

Rry Wy (F) ~ Rry)(Rsi(n] "7 ® ngkv))U+
~ Rs|Rr{(r{'F @ k-1, ®keiy,)

~ Rs{Rri((*')(x)) L7 ® knglwmsflUJr)

~ Rs|((7)) 1.7 ® erkﬂ;ms,lur).
(Here 71 : M x R2 x Ry — M x R and 7} : M x R? = M x R2.) Hence it suffices to show
that Rr,’ kwg_lms,lw ~ (. This follows from direct calculation. Ol

Now by the previous two propositions and Lemma 6.17, we can deduce the Theorem 6.20.
In fact, we make a remark here that using Lemma 6.23 and Proposition 6.24, one can show
that our functor ¥ actually factors as

-1 .

W s psha(A) == lim pshy, o1y (qagz ' (A) NT*(M xR x (0,¢)))
e>0
€>

where the second functor is microlocalization along gqq-'(A) (note that ggg-'(A) is disjoint
from rgr—t(A)).

6.4. Quantization and Gluing. Throughout this section we will assume that our conical
Lagrangian A C T *(M x R) is the conification of an exact Lagrangian in 7% M, or equiva-
lently, our Legendrian submanifold A/R is a Legendrian lift of the exact Lagrangian.
NWe are able to define the quantization of the conical Lagrangian A C T%(M x R).
Basically the construction is as follows. Let .# € usha(Ag) be represented by .7 € D%O(U ).

; 7 b
Now we consider V(%) € quqgl(Ao)umr;l(Ao)(M x R x Ry). Then

F' = Vy(F) | mxrxie € DbAOuﬂ(AO)(M x R)

where T, is the translation along R by €. Finally we cut off the sheaf in an open subset
V C M x R diffeomorphic to M x R such that Ag C V while T,(Ag) NV = . Then .Z|y
gives the sheaf we are seeking for.

However, one may note that this procedure we just described is completely cheating
since we'’re starting from a globally defined sheaf and trying to construct such a sheaf (as
if we don’t know it is already there). The real problem is about gluing. Namely, we don’t
know (1). if the transition functions for sheaves on D _, 1 (M xR xRy gives

qdqx (Ao)Urarz~ (Ao)

transition functions on each slice; (2). if the translation T, doesn’t change the morphism
space between local representatives. This will be our task.
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Here is where we need the condition that the Legendrian submanifold comes from an

exact Lagrangian, which ensures that there are no Reeb chords and thus the sheaf theory
on different slices doesn’t change.

Definition 6.13. Foru € R the translation T, is Tp, : T*(M xR) — T*(M xR), (x,&;t,7) —
(x,&t+u,7). For ACT*(M xR), A, = AUT,(A).

Lemma 6.25. Let A C T} (M x R) be a conification of an exact Lagrangian in T*M.
Then there is a Hamiltonian isotopy ¢ : T*(M x R) x Ry — T*(M x R) such that

dp(A1) = qagy "(A) Urgrz 1 (A), @u(A1) = Ay

Let Ay = qqq;'(A) Urgrzt(A). Then by Guillermou-Kashiwara-Schapira, there are
equivalences of categories

DY (M xRxRy) = DY (M xRx (0,u)) = DY (M xR).
Corollary 6.26. Let A C T} (M x R) be a conification of an exact Lagrangian in T*M.
F,9 € DY (M x R). Then
RHom(ZF,9) = RHom(q ' Z,r~'9) = RHom(Z,T,.9).
Proof. Since r is a submersion with contractible fibers, we have
RHom(Z,9) = RHom(r '.7,r7'9).

Consider the exact triangle in Lemma 6.17 we have

RHom(r Y%, r7'4) = RHom(q % ,r'4) = RHom(V y1,r(F),r'9) ﬂ) .
Since we know that RrW«r(F) ~ 0, the corollary is true. O
Now we start gluing. First let’s introduce some notations.

Definition 6.14. Let Ao C A C T (M x R), {U;}icr be an open covering of M. Denote
by A;; the connected components of ANT*U;. Let

Wij = Wl(ﬁUi(AO N Aij)), Vij =U; N (Wij X R).
We assume that
(1). 9V NU; is smooth;
(2). TU NAy N (=NVy) =0, T3 T TN Ty, T°U; = 0;
(3) TU; N (AZ] + N*V;J) N (Aij’ + N*Vvij/) = @, Vj# j/.
Under this assumption, we write
ASXt = U (T*UZ N (AZ] + N*W]))
iel,jed;
Note that near a point, V;; only depends on Ay, so A$* only depends on Ag. In addition
by (3) we know that AS* N A = Ay.

Lemma 6.27. Let A C T*M be a conical Lagrangian and F,9 € DY(M) such that
SS(F)=55(4)=A. Let V.C M be open such that dV is smooth, and assume that

(1). (=N*U)NnA = 0;

(2). TRI*M N T}, T*M =0,

Then phom(RUy(F), 9 )| jw s = hom(F G ) juis e s -
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Proof. Since (~=N*U)NA = 0, RT'y (#) ~ F;. Thus we have a natural morphism .7 — .7,
inducing

u : phom(F,9) — phom(Fg,9).

One can check that supp(phom (g, %)) C T*U, and v is an isomorphism on T*U. Now
we check that

SS(uhom(F,9)) N N*(T*U) = 0.

We know that SS(uhom(F,%)) C C(A,A — N*U). One can check this fact by hand.
Let 7 be the mapping cone of

u: phom(F,9) ey — phom( 7, 9).
Then supp(.2#) C d(T*U). Because the inclusion d(T*U) — T*M is proper,
Ty

(T*U)T*M’supp(t%") - SS('%&)

However, SS(.) N N*(T*U) = . Therefore supp(.7°) has to be empty. This finishes the
proof. O

Proposition 6.28. Let A C T}, ((M x R) be the conification of an exact Lagrangian sat-
isfying the assumptions. Let ¢ = (cjj/)j’jleui J; be a Cech coboundary, (bj)jGUi J; be its

primitive, and F € (usha(Mo))e be a pure object with representative
fij (Z el je JZ’), Uij 5 € HE¢i' (AO N Ajj/,,uhom(ﬁ‘}j, yi/j/)) (’i,i, el je Ji,j/ S Ji/).

Then there exists € > 0, F € DZ q*l(A)(M x R x (0,€)) and isomorphisms
ddn

¢i: Flu,. = @ Wy, (RTv, Z[b)]) lvs...
J€J;

where Uje = Ui+ N (M x R x (0,€)), such that
(1). supp(F) C 7 * Tarsxr(Ao) and

SS(F) C qagr 'S Urgr, LS UT* M x (R x Ry);

(2). ioy'|u,, represents u;j ;s € H' (Ao OV Agyr, phom(Fij, Firyr)), § € Jinj' € Jir;
(3). i induces an isomorphism F = ¢~ 1(F).

Proof. Let U] be a neighbourhood of U; on which .%; is defined, and A is non-characteristic
for OU;. This will allow us to write down the isomorphisms

(]kA)T*a_ ~ Rl ka, (kA)T*Vi >~ RLj.q k.
By the assumption, we know that when A;; N Ay = 0, we have
supp(phom((RTvi, (F)v,, > Fi)) CSS((RTv,,(Fi))v,,) N SS(F)
C(Ayj + T3y, Ui + Tg\@/j, U;) N Aijr = 0.
Hence by Lemma 6.27 one can obtain that

,uhom((Rva (tO}\’L))VZ/J/ 3 yz’) T*m 2ﬂh0m((yz)V/ 79 yz’)‘T*U,
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Now by the theorem in the previous section we have

H* (Ui, R#om(%, %))~ P H (T*Uii’aﬁ‘hom(RFsz (Fi), Ry, , (yj)))
jedig'edy

~ P H (TU phom((RTy;, (ﬂi))vi,j/,%))
jeJig'edy
T*V¢j>

~ @ Hl <T*ﬁ“/, phom(ﬁi, yzl)
jeJig'edy

~ @ Hl (T*U”/ N Aij, ,uhom(ﬁi, <g}/)) .

J€Ji i €Jy

This completes the gluing procedure modulo technical issues about gluing sheaves by local
sections. 0

Proof of the main theorem. By the previous proposition there is a sheaf

b
Fi € DA+ﬁT*(M><R><(0,e))(M x R x (0,¢)).

Since the sheaf category is invariant under Hamiltonian isotopies, there is a sheaf 73 €
D?\+(M x R x Ry ) that extends .%#;. Suppose A C T*(M x [a,b]). Then we restrict .%s to

M xR x {b—a+2}. Then A and T}_,12(A) are separated by the hyperplane ¢t = b + 1.
Consider a diffeomorphism

M xR = Mx(=00,b+1), flax(—oop = id.
Let 7 = f_1(92|MX(_OO7b+1)). Then .# satisfies the condition we need. O

6.5. Behaviour of the Sheaf. Before proving any further results using the existence
of sheaf quantization, we first explore the behaviour of the sheaf, and in particular the
behaviour at infinity, in this section.

Definition 6.15. Let A C T*(M xR) be the conification of a compact Lagrangian L C T*M,
in particular m(A) C M x [~A, A]. Let # € D(M x R). Then
ﬂ_ - 9|M><{_2A}7 ﬁ-‘r = ‘gZ|M><{2A}
The category DXO(M x R) is the full subcategory of DS (M x R) consisting of sheaves with
F_~0.
Proposition 6.29. Let 7,9 € D} (M x R). Then
RHom(%#,9) ~ RHom(%4,9) ~ RT'(A, uhom(F,9)).

Proof. The isomorphism RHom/(%#,9) ~ RI'(A, uhom(%,%)) is essentially what we have
proved. Thus it suffices to show that RHom/(%#,9) ~ RHom(.%+,%,). We apply Corollary
6.26, for u > 2A,

RHom(Z,9) ~ RHom(Z,Ty.9) ~ RHom(ry; Ft, Tus¥)
~ RHom(F 4,y Tux9).
Consider the exact triangle

_ 1
Tuy*g (9 k(—oo,A-I—u) — Tu’*g — ﬂMlg+ & k[A—l—u,—i—oo) u) .

Now we show that ma/«(Tus¥ ® K(_oo,a4u)) = 0. Since SS(¥9) C T%,(M x R) and
supp(Tu,«9 @ k(_og,a+4)) is compact, by microlocal Morse lemma

WM’*(T%*% ® k(—oo,A—f—u)) = FM,*(T%*% & k(—oo,A—i—u) |(—oo,—A)) ~ 0.
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Hence we are through. (|

Proposition 6.30. Let k = 7Z or a finite field, and F € DXO(M x R) be simple. Then F
is concentrated in a single degree and has rank 1.

Proof. First let k be a finite field and prove that ., is concentrated in a single degree.
Since [k| < oo, one can choose a finite cover r : M — M such that 1%, is a trivial local
system. Write ' = 7 x idg, A’ = (dr')"}(A) and .#’ = (r')"L.#. Then by finiteness of r,
compactness is preserved,

RHom(Z!, 7. ) ~ RU(N, phom(F', #')) = RT'(A'  ky).

The left hand side is symmetrically indexed, while the right hand side is concentrated in
nonnegative degrees. Thus both sides are concentrated in degree 0, which is just what we
claim.

We show that %, is of rank 1. By the isomorphism we used, it suffices to show that
A’ has only 1 component. Suppose the stalk of %, is k?. Then the dimension of the left
hand side is d? and can have at most d independent idempotents. However, we know that
the number of independent idempotents is equal to the number of connected components.
Therefore d = 1.

Finally let k = Z. First suppose the stalk of %, has p-torsion, then by universal co-
efficient theorem we know that %, ® Z/pZ cannot be concentrated in a single degree. A
contradition. Since %, is free and its localization along any prime p is concentrated in a
single degree and has rank 1, the claim is proved. U

6.6. Topological Consequences. In this section we show how the sheaf quantization
result can be used to show the restrictions on exact Lagrangians in cotangent bundles. The
nearby Lagrangian conjecture predicts that ALL closed exact Lagrangians L in a cotangent
bundle (of a closed manifold) T*@Q are Hamiltonian isotopic to the zero section. Currently,
the result by Abouzaid and Kragh claims that the projection

n:L—->M
induces a (simple) homotopy equivalence. Now we prove the result.

Theorem 6.31. Let L be a closed exact Lagrangian submanifold in T* M where M is closed.
Then the Maslov class up =0 and 7 : L — M induces a homotopy equivalence.

We first prove homotopy equivalence under the assumption of vanishing of Maslov class
and the relative Stiefel-Whitney class.

Proposition 6.32. Let A be the conification of a compact exact Lagrangian L C T*M
where M. Suppose upy = rwap = 0. Then the natural projection m : A — M induces an

isomorphism 7* : H*(M;ky) — H*(A;ky).
Proof. Choose a simple object .# € pushp(A) with preimage .# € D?\,O(M x R). Let k = Z.
Then since by Proposition 6.30 % is a rank 1 local system on M,
RHom(%,, %) ~ RT'(M;kyy).
On the other hand, by Proposition 6.29 we have
RHom(%4, %) ~ RT(A; uhom (%, %)) = RT(A;ky).

Finally one need to check that this map is indeed induced by the projection (which is not
so hard). This proves the proposition. O

We then prove the vanishing result for the Maslov class of the exact Lagrangian.



SHEAF THEORY IN SYMPLECTIC GEOMETRY 49

Theorem 6.33. Let A C T*(M xR) be the conification of a compact Lagrangian L C T*M.
Then py, = pp = 0.

One may want to start with a global section on pshp(A). First we need the following
lemma, which will allow us to lift A as well as M simultaneously to a cyclic cover A and M
so that pgz = 0.

Lemma 6.34. The natural projection m : A — M induces an injection m, : w1 (A) — 71 (M).

Proof. Let .Z be the local system on A corresponding to the regular representation of

m1(A). There exists a simple object Fy € Dl/’m’A(M x R), where DI/’M(M x R) is the

sheaf of categories localized along the shifting functor [1]. Now there exists a unique .#; €
D’/’[I] A(M x R) such that

phom(%y, 1) ~ Z.
Using Proposition 6.29, one can find that in fact
7T71,92.17+ ~Z® W71§.07+.

Let .Z; be the sheaf associated to U — Hom(Z/2Zy, %; +). These local systems correspond
to representations pg 1 of 7 (M), and induce representations of 71(A). In addition we have

P1 = Preg @ Po- Pilker(r,) are trivial, 80 is preg|ker(r,)- This shows that ker(m.) = 1. O
Proof of Theorem 6.33. We view up as a map mp(A) — Z. Consider the diagram

A LA

\! \

YN Vi

where f : M — M is the universal cover, and A is a connected component of df ~'(A).
By the lemma, we know that A is actually the universal cover of A. Now we in addition

consider R 3

A — A/ker(up) — A

I ol !

M — M/ker(uy) — M.
When pp # 0 the right half square is a diagram of cyclic covering.

Since p; = 0 one can pick an object # € pushz(A). Then a deck transformation ¢

on M will give ¢ '.F ~ F[my] where my is the Maslov number. This tells us that
F+ ~ Fi[mp]. However by Proposition 6.29, since % is bounded, %, must also be
bounded. A contradiction. O

Proposition 6.35. Let A C T*(M x R) be the conification of a compact Lagrangian L C
T*M. Then rwa = rwaa = 0.

Proof. Note that (Z/27)* is trivial, so when k = Z /27, pushp(A) always has a simple global
object. By Proposition 6.32,

7 H3(M;Z/2Z) = H*(\;Z/27).
Hence rws 1, = rwe pr = 0. Il

These two propositions above tell us that RI'(A;k) ~ RI'(M;k) without any further
assumptions.

Proposition 6.36. The natural projection @ : A — M induces an isomorphism my :
7T1(A) — 7T1(M).
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Proof. We show that first 7, ! : Loc(M) = Loc(A) is an equivalence and second RT'(M,.%) =~
RU(A, 77 L%). Let F € DXO(M x R) be a simple sheaf.
On the one hand, we have

RHom(¥,%") ~ RHom(Z, @ £, F @ <)
~ RT(A, phom(F @ 7} L, F @ 7)) L))
~ RT'(A, phom(F, F) @ R# om(n 1L, n71.L"))
~ RHom(r %, 77 1.%").

On the other hand, note that uhom(.%#, —) induces an equivalence between psha(A) and
DPLoc(A), so for any £y € Loc(A) there is a preimage ¥ € usha(A). This will give us
9 c DXO(M x R) and

phom(F,9)|a ~ Zh.
Without loss of generality we may also assume that % ~ kj;. Then
Lu=9 ~(Fr 'Lyt
By Proposition 6.29 this means ¥ ~ .% ®@ 7~ '.%’. Hence
L =~ phom(F,9) |y ~ RAom(F,9,) =1 L.

This proves the equivalence.

Finally, to check that RI'(M, %) ~ RI(A, 7~ 1.%)), it suffices to use the fact that
G ~ F@n %y and Proposition 6.29. This finally shows the isomorphism on fundamental
groups 7y : w1 (A) — i (M). O

Now the main theorem follows from Whitehead theorem.
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